{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T02:12:12Z","timestamp":1726107132353},"publisher-location":"Cham","reference-count":34,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030630829"},{"type":"electronic","value":"9783030630836"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63083-6_9","type":"book-chapter","created":{"date-parts":[[2020,11,20]],"date-time":"2020-11-20T16:18:09Z","timestamp":1605889089000},"page":"105-123","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Feasibility and Design Trade-Offs of Neural Network Accelerators Implemented on Reconfigurable Hardware"],"prefix":"10.1007","author":[{"given":"Quang-Kien","family":"Trinh","sequence":"first","affiliation":[]},{"given":"Quang-Manh","family":"Duong","sequence":"additional","affiliation":[]},{"given":"Thi-Nga","family":"Dao","sequence":"additional","affiliation":[]},{"given":"Van-Thanh","family":"Nguyen","sequence":"additional","affiliation":[]},{"given":"Hong-Phong","family":"Nguyen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,21]]},"reference":[{"unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS 25, pp. 1106\u20131114. Curran Associates, Inc. (2012)","key":"9_CR1"},{"unstructured":"Sun, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Neural Information Processing Systems, pp. 1988\u20131996 (2014)","key":"9_CR2"},{"issue":"1","key":"9_CR3","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1109\/TPAMI.2012.59","volume":"35","author":"S Ji","year":"2013","unstructured":"Ji, S., Xu, W.: 3D convolutional neural networks for automatic human action recognition. Pattern Anal. Mach. Intell. 35(1), 221\u2013231 (2013)","journal-title":"Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"Abdel-Hamid, O.: Convolutional neural networks for speech recognition. In: Audio Speech & Language Processing (2014)","key":"9_CR4","DOI":"10.1109\/TASLP.2014.2339736"},{"unstructured":"https:\/\/github.com\/Xilinx\/chaidnn. Accessed 31 Mar 2020","key":"9_CR5"},{"unstructured":"https:\/\/www.xilinx.com\/support\/documentation\/whitepapers\/wp504-accel-dNeuralnetworks.pdf. Accessed 31 Mar 2020","key":"9_CR6"},{"unstructured":"http:\/\/www.deephi.com\/technology\/dnndk. Accessed 31 Mar 2020","key":"9_CR7"},{"unstructured":"Abadi, M., et al.: Tensorflow: Large-scale ML on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)","key":"9_CR8"},{"unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Neural Information Processing Systems, pp. 1097\u20131105 (2012)","key":"9_CR9"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026\u20131034 (2015a)","key":"9_CR10","DOI":"10.1109\/ICCV.2015.123"},{"issue":"3","key":"9_CR11","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vis."},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","key":"9_CR12","DOI":"10.1109\/CVPR.2016.90"},{"doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1\u20139 (2015)","key":"9_CR13","DOI":"10.1109\/CVPR.2015.7298594"},{"unstructured":"Guo, K., Zeng, S., Yu, J., Wang, Y., Yang, H.: A survey of FPGA-based neural network accelerator (2017). arXiv:1712.08934v3","key":"9_CR14"},{"doi-asserted-by":"publisher","unstructured":"Liang, S., Yin, S., Liu, L., Luk, W., Wei, S.: FP-BNN: binarized neural network on FPGA. Neurocomputing 275, 1072\u20131086 (2017). Accessed 18 Oct 2017. https:\/\/doi.org\/10.1016\/j.neucom.2017.09.046","key":"9_CR15","DOI":"10.1016\/j.neucom.2017.09.046"},{"unstructured":"NVIDIA, Tesla K40 GPU Active Accelerator, NVIDIA (2013)","key":"9_CR16"},{"doi-asserted-by":"crossref","unstructured":"Chen, Y.-H., et al.: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Int. Solid-State Circ. Conf. (ISSCC) (2016)","key":"9_CR17","DOI":"10.1109\/ISSCC.2016.7418007"},{"unstructured":"Ovtcharov, K., Ruwase, O., Kim, J.-Y., Fowers, J., Strauss, K., Chung, E.S.: Accelerating deep CNNs using specialized hardware. In: Microsoft Research Whitepaper, vol. 2, no. 11 (2015)","key":"9_CR18"},{"doi-asserted-by":"crossref","unstructured":"Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter services. In: International Symposium on Computer Architecture (ISCA), p. 1324 (2014)","key":"9_CR19","DOI":"10.1109\/ISCA.2014.6853195"},{"doi-asserted-by":"publisher","unstructured":"Bettoni, M., Urgese, G., Kobayashi, Y., Macii, E., Acquaviva, A.: A convolutional neural network fully implemented on FPGA for embedded platforms. In: 2017 New Generation of CAS (NGCAS), Genova, pp. 49\u201352 (2017). https:\/\/doi.org\/10.1109\/ngcas.2017.16","key":"9_CR20","DOI":"10.1109\/ngcas.2017.16"},{"doi-asserted-by":"publisher","unstructured":"Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A., Venkatesh, G., Marr, D.: Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In: 2016 International Conference on Field-Programmable Technology (FPT), Xi\u2019an, pp. 77\u201384 (2016). https:\/\/doi.org\/10.1109\/fpt.2016.7929192","key":"9_CR21","DOI":"10.1109\/fpt.2016.7929192"},{"doi-asserted-by":"publisher","unstructured":"Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krishnan, S., Marr, D.: Accelerating recurrent neural networks in analytics servers: comparison of FPGA, CPU, GPU, and ASIC. In: 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, pp. 1\u20134 (2016). https:\/\/doi.org\/10.1109\/fpl.2016.7577314","key":"9_CR22","DOI":"10.1109\/fpl.2016.7577314"},{"unstructured":"http:\/\/yann.lecun.com\/exdb\/mnist\/. Accessed 31 Mar 2020","key":"9_CR23"},{"unstructured":"Krizhevsky, A.: CIFAR-10 AND CIFAR-100 DATASETS (2009). https:\/\/www.cs.toronto.edu\/~kriz\/cifar.html","key":"9_CR24"},{"unstructured":"https:\/\/becominghuman.ai\/best-languages-for-machine-learning-in-2020-6034732dd24. Accessed 31 Mar 2020","key":"9_CR25"},{"unstructured":"https:\/\/opensource.com\/article\/18\/5\/top-8-open-source-ai-technologies-machine-learning. Accessed 31 Mar 2020","key":"9_CR26"},{"doi-asserted-by":"publisher","unstructured":"Feng, J., He, X., Teng, Q., Ren, C., Chen, H., Li, Y.: Reconstruction of porous media from extremely limited information using conditional generative adversarial networks. Phys. Rev. E. 100, 033308 (2019). https:\/\/doi.org\/10.1103\/physreve.100.033308","key":"9_CR27","DOI":"10.1103\/physreve.100.033308"},{"doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (2018)","key":"9_CR28","DOI":"10.1109\/CVPR.2018.00745"},{"doi-asserted-by":"crossref","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM (2017)","key":"9_CR29","DOI":"10.1145\/3065386"},{"unstructured":"https:\/\/www.xilinx.com\/support\/documentation\/sw_manuals\/xilinx2018_1\/ug937-vivado-design-suite-simulation-tutorial.pdf. Accessed 06 Jun 2020","key":"9_CR30"},{"unstructured":"Aurelien Gron.: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 1st edn. O\u2019Reilly Media (2017)","key":"9_CR31"},{"unstructured":"https:\/\/www.xilinx.com\/support\/documentation\/selection-guides\/7-series-product-selection-guide.pdf. Accessed 06 Jun 2020","key":"9_CR32"},{"unstructured":"https:\/\/www.xilinx.com\/support\/documentation\/selection-guides\/ultrascale-plus-fpga-product-selection-guide.pdf. Accessed 06 Jun 2020","key":"9_CR33"},{"unstructured":"https:\/\/www.xilinx.com\/support\/documentation\/data_sheets\/ds890-ultrascale-overview.pdf. Accessed 06 Jun 2020","key":"9_CR34"}],"container-title":["Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","Industrial Networks and Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63083-6_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T04:41:10Z","timestamp":1619239270000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63083-6_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030630829","9783030630836"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63083-6_9","relation":{},"ISSN":["1867-8211","1867-822X"],"issn-type":[{"type":"print","value":"1867-8211"},{"type":"electronic","value":"1867-822X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"21 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"INISCOM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Industrial Networks and Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hanoi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietnam","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iniscom2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iniscom.eai-conferences.org\/2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Confy","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}