{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T02:11:08Z","timestamp":1726107068903},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030630829"},{"type":"electronic","value":"9783030630836"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63083-6_4","type":"book-chapter","created":{"date-parts":[[2020,11,20]],"date-time":"2020-11-20T16:18:09Z","timestamp":1605889089000},"page":"45-56","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Convolutional Neural Network-Based DOA Estimation Using Non-uniform Linear Array for Multipath Channels"],"prefix":"10.1007","author":[{"given":"Van-Sang","family":"Doan","sequence":"first","affiliation":[]},{"given":"Thien","family":"Huynh-The","sequence":"additional","affiliation":[]},{"given":"Van-Phuc","family":"Hoang","sequence":"additional","affiliation":[]},{"given":"Dong-Seong","family":"Kim","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,21]]},"reference":[{"key":"4_CR1","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1109\/TAP.1986.1143830","volume":"34","author":"R Schmidt","year":"1986","unstructured":"Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276\u2013280 (1986)","journal-title":"IEEE Trans. Antennas Propag."},{"key":"4_CR2","doi-asserted-by":"publisher","first-page":"984","DOI":"10.1109\/29.32276","volume":"37","author":"R Roy","year":"1989","unstructured":"Roy, R., Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37, 984\u2013995 (1989)","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"key":"4_CR3","doi-asserted-by":"publisher","first-page":"1726","DOI":"10.1109\/78.765150","volume":"47","author":"KM Reddy","year":"1999","unstructured":"Reddy, K.M., Reddy, V.U.: Analysis of spatial smoothing with uniform circular arrays. IEEE Trans. Signal Process. 47, 1726\u20131730 (1999)","journal-title":"IEEE Trans. Signal Process."},{"key":"4_CR4","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1109\/29.17496","volume":"37","author":"SU Pillai","year":"1989","unstructured":"Pillai, S.U., Kwon, B.H.: Forward\/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 37, 8\u201315 (1989)","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"unstructured":"Lin, J.-D., Fang, W.-H., Wu, M.-L.: Joint spatial-temporal channel parameter estimation using tree-structured MUSIC. In: IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367) (2002)","key":"4_CR5"},{"key":"4_CR6","doi-asserted-by":"publisher","first-page":"746","DOI":"10.3390\/s130100746","volume":"13","author":"Q Wang","year":"2013","unstructured":"Wang, Q., Chen, H., Zhao, G., Chen, B., Wang, P.: An improved direction finding algorithm based on Toeplitz approximation. Sensors 13, 746\u2013757 (2013)","journal-title":"Sensors"},{"key":"4_CR7","doi-asserted-by":"publisher","first-page":"2161","DOI":"10.1109\/TAP.2005.850735","volume":"53","author":"M Pastorino","year":"2005","unstructured":"Pastorino, M., Randazzo, A.: A smart antenna system for direction of arrival estimation based on a support vector regression. IEEE Trans. Antennas Propag. 53, 2161\u20132168 (2005)","journal-title":"IEEE Trans. Antennas Propag."},{"issue":"10","key":"4_CR8","doi-asserted-by":"publisher","first-page":"4901","DOI":"10.1109\/TAP.2012.2209195","volume":"60","author":"AE Gonnouni","year":"2012","unstructured":"Gonnouni, A.E., Martinez-Ramon, M., Rojo-Alvarez, J.L., Camps-Valls, G., Figueiras-Vidal, A.R., Christodoulou, C.G.: A support vector machine MUSIC algorithm. IEEE Trans. Antennas Propag. 60(10), 4901\u20134910 (2012)","journal-title":"IEEE Trans. Antennas Propag."},{"doi-asserted-by":"crossref","unstructured":"Sun, F.-Y., Tian, Y.-B., Hu, G.-B., Shen, Q.-Y.: DOA estimation based on support vector machine ensemble. Int. J. Numer. Model. Electron. Netw. Dev. Fields, e2614 (2019)","key":"4_CR9","DOI":"10.1002\/jnm.2614"},{"issue":"9","key":"4_CR10","doi-asserted-by":"publisher","first-page":"8549","DOI":"10.1109\/TVT.2018.2851783","volume":"67","author":"H Huang","year":"2018","unstructured":"Huang, H., Yang, J., Huang, H., Song, Y., Gui, G.: Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Trans. Veh. Technol. 67(9), 8549\u20138560 (2018)","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"12","key":"4_CR11","doi-asserted-by":"publisher","first-page":"7315","DOI":"10.1109\/TAP.2018.2874430","volume":"66","author":"Z-M Liu","year":"2018","unstructured":"Liu, Z.-M., Zhang, C., Yu, P.S.: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections. IEEE Trans. Antennas Propag. 66(12), 7315\u20137327 (2018)","journal-title":"IEEE Trans. Antennas Propag."},{"doi-asserted-by":"crossref","unstructured":"Adavanne, S., Politis, A., Virtanen, T.: Direction of arrival estimation for multiple sound sources using convolutional recurrent neural network, CoRR, vol. abs\/1710.10059 (2017)","key":"4_CR12","DOI":"10.23919\/EUSIPCO.2018.8553182"},{"issue":"1","key":"4_CR13","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1109\/JSTSP.2019.2901664","volume":"13","author":"S Chakrabarty","year":"2019","unstructured":"Chakrabarty, S., Habets, E.A.P.: Multi-speaker DOA estimation using deep convolutional networks trained with noise signals. IEEE J. Sel. Top. Signal Process. 13(1), 8\u201321 (2019)","journal-title":"IEEE J. Sel. Top. Signal Process."},{"issue":"11","key":"4_CR14","doi-asserted-by":"publisher","first-page":"1688","DOI":"10.1109\/LSP.2019.2945115","volume":"26","author":"L Wu","year":"2019","unstructured":"Wu, L., Liu, Z.-M., Huang, Z.-T.: Deep convolution network for direction of arrival estimation with sparse prior. IEEE Signal Process. Lett. 26(11), 1688\u20131692 (2019)","journal-title":"IEEE Signal Process. Lett."},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770\u2013778 (2016)","key":"4_CR15","DOI":"10.1109\/CVPR.2016.90"},{"issue":"4","key":"4_CR16","doi-asserted-by":"publisher","first-page":"811","DOI":"10.1109\/LCOMM.2020.2968030","volume":"24","author":"T Huynh-The","year":"2020","unstructured":"Huynh-The, T., Hua, C.-H., Pham, Q.-V., Kim, D.-S.: MCNet: an efficient CNN architecture for robust automatic modulation classification. IEEE Commun. Lett. 24(4), 811\u2013815 (2020)","journal-title":"IEEE Commun. Lett."},{"doi-asserted-by":"crossref","unstructured":"Huynh-The, T., Hua, C., Kim, J., Kim, S., Kim, D.: Exploiting a low-cost CNN with skip connection for robust automatic modulation classification. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1\u20136, Seoul, Korea (South) (2020)","key":"4_CR17","DOI":"10.1109\/WCNC45663.2020.9120667"},{"issue":"2","key":"4_CR18","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1016\/j.icte.2020.03.008","volume":"6","author":"V-S Doan","year":"2020","unstructured":"Doan, V.-S., Kim, D.-S.: DOA estimation of multiple non-coherent and coherent signals using element transposition of covariance matrix. ICT Express 6(2), 67\u201375 (2020)","journal-title":"ICT Express"}],"container-title":["Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","Industrial Networks and Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63083-6_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T21:19:51Z","timestamp":1619299191000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63083-6_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030630829","9783030630836"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-63083-6_4","relation":{},"ISSN":["1867-8211","1867-822X"],"issn-type":[{"type":"print","value":"1867-8211"},{"type":"electronic","value":"1867-822X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"21 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"INISCOM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Industrial Networks and Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hanoi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietnam","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iniscom2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iniscom.eai-conferences.org\/2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Confy","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19 pandemic the conference was held virtually.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}