{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T00:23:32Z","timestamp":1743035012203,"version":"3.40.3"},"publisher-location":"Cham","reference-count":10,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030624620"},{"type":"electronic","value":"9783030624637"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-62463-7_17","type":"book-chapter","created":{"date-parts":[[2020,11,10]],"date-time":"2020-11-10T09:06:23Z","timestamp":1604999183000},"page":"183-192","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Novel Game Machine Learning Method for Calculating Optimal Response for Edge Server"],"prefix":"10.1007","author":[{"given":"Rui","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Hui","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Ju-fu","family":"Cui","sequence":"additional","affiliation":[]},{"given":"Yi-zhe","family":"Li","sequence":"additional","affiliation":[]},{"given":"Shu-shu","family":"Shao","sequence":"additional","affiliation":[]},{"given":"Hang","family":"Ren","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,11]]},"reference":[{"key":"17_CR1","unstructured":"Han, Y., Wang, X., Leung, V., Niyato, D.: Convergence of edge computing and deep learning: a comprehensive survey. arXiv preprint arXiv:1907.08349 (2019)"},{"issue":"4","key":"17_CR2","doi-asserted-by":"publisher","first-page":"2322","DOI":"10.1109\/COMST.2017.2745201","volume":"19","author":"Y Mao","year":"2017","unstructured":"Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322\u20132358 (2017)","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"17_CR3","first-page":"1","volume":"2018","author":"X Zhou","year":"2018","unstructured":"Zhou, X., Xing, L.: Sample selected extreme learning machine based intrusion detection in fog computing and MEC. Wirel. Commun. Mob. Comput. 2018, 1\u201310 (2018)","journal-title":"Wirel. Commun. Mob. Comput."},{"issue":"3","key":"17_CR4","doi-asserted-by":"publisher","first-page":"2671","DOI":"10.1109\/COMST.2019.2896380","volume":"21","author":"N Chaabouni","year":"2019","unstructured":"Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki, P.: Network intrusion detection for IoT security based on learning techniques. IEEE Commun. Surv. Tutor. 21(3), 2671\u20132701 (2019)","journal-title":"IEEE Commun. Surv. Tutor."},{"issue":"1","key":"17_CR5","doi-asserted-by":"publisher","first-page":"763","DOI":"10.1016\/j.future.2017.01.025","volume":"78","author":"Z Yu","year":"2018","unstructured":"Yu, Z., Man, H., Xu, Q.: Towards leakage-resilient fine-grained access control in fog computing. Future Gener. Comput. Syst. 78(1), 763\u2013777 (2018)","journal-title":"Future Gener. Comput. Syst."},{"key":"17_CR6","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1016\/j.ins.2018.02.005","volume":"479","author":"Y Yang","year":"2019","unstructured":"Yang, Y., Zheng, X., Guo, W., Liu, X., Chang, V.: Privacy-preserving smart IoT-based healthcare big data storage and self-adaptive access control system. Inf. Sci. 479, 567\u2013592 (2019)","journal-title":"Inf. Sci."},{"issue":"1","key":"17_CR7","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1007\/s11390-019-1906-z","volume":"34","author":"J Zheng","year":"2019","unstructured":"Zheng, J., Namin, A.: A survey on the moving target defense strategies: an architectural perspective. J. Comput. Sci. Technol. 34(1), 207\u2013233 (2019)","journal-title":"J. Comput. Sci. Technol."},{"key":"17_CR8","doi-asserted-by":"publisher","first-page":"101660","DOI":"10.1016\/j.cose.2019.101660","volume":"89","author":"L Huang","year":"2020","unstructured":"Huang, L., Zhu, Q.: A dynamic games approach to proactive defense strategies against advanced persistent threats in cyber-physical systems. Comput. Secur. 89, 101660 (2020)","journal-title":"Comput. Secur."},{"issue":"8","key":"17_CR9","doi-asserted-by":"publisher","first-page":"2867","DOI":"10.1007\/s11276-017-1509-y","volume":"24","author":"M Anzani","year":"2017","unstructured":"Anzani, M., Haj Seyyed Javadi, H., Modirir, V.: Key-management scheme for wireless sensor networks based on merging blocks of symmetric design. Wireless Netw. 24(8), 2867\u20132879 (2017). https:\/\/doi.org\/10.1007\/s11276-017-1509-y","journal-title":"Wireless Netw."},{"issue":"2","key":"17_CR10","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1007\/s00145-019-09337-9","volume":"33","author":"N Bitansky","year":"2019","unstructured":"Bitansky, N., Nishimaki, R., Passel\u00e8gue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. J. Cryptol. 33(2), 357\u2013405 (2019). https:\/\/doi.org\/10.1007\/s00145-019-09337-9","journal-title":"J. Cryptol."}],"container-title":["Lecture Notes in Computer Science","Machine Learning for Cyber Security"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-62463-7_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,12,14]],"date-time":"2020-12-14T08:02:58Z","timestamp":1607932978000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-62463-7_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030624620","9783030624637"],"references-count":10,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-62463-7_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"11 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ML4CS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Machine Learning for Cyber Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ml4cs2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/nsclab.org\/ml4cs2020\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"360","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"118","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"40","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}