{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T18:11:12Z","timestamp":1742926272963,"version":"3.40.3"},"publisher-location":"Cham","reference-count":35,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030620974"},{"type":"electronic","value":"9783030620981"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-62098-1_2","type":"book-chapter","created":{"date-parts":[[2020,10,29]],"date-time":"2020-10-29T14:05:09Z","timestamp":1603980309000},"page":"15-27","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Smart City Air Pollution Monitoring and Prediction: A Case Study of Skopje"],"prefix":"10.1007","author":[{"given":"Jovan","family":"Kalajdjieski","sequence":"first","affiliation":[]},{"given":"Mladen","family":"Korunoski","sequence":"additional","affiliation":[]},{"given":"Biljana Risteska","family":"Stojkoska","sequence":"additional","affiliation":[]},{"given":"Kire","family":"Trivodaliev","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,10,30]]},"reference":[{"key":"2_CR1","unstructured":"World Health Organization: Ambient (outdoor) air quality and health. In: World Health Organization (2016)"},{"key":"2_CR2","unstructured":"WHO: Air pollution (2018). https:\/\/www.who.int\/airpollution\/en\/"},{"issue":"21","key":"2_CR3","doi-asserted-by":"publisher","first-page":"2331","DOI":"10.1161\/CIR.0b013e3181dbece1","volume":"121","author":"RD Brook","year":"2010","unstructured":"Brook, R.D., et al.: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American heart association. Circulation 121(21), 2331\u20132378 (2010)","journal-title":"Circulation"},{"key":"2_CR4","unstructured":"Xing, Y.F., Xu, Y.H., Shi, M.H., Lian, Y.X.: The impact of PM2. 5 on the human respiratory system. J. Thorac. Dis. 8(1), E69 (2016)"},{"key":"2_CR5","unstructured":"WHO: More than 90% of the world\u2019s children breathe toxic air every day (2018). https:\/\/www.who.int\/news-room\/detail\/29-10-2018-more-than-90-of-the-world%E2%80%99s-children-breathe-toxic-air-every-day"},{"key":"2_CR6","unstructured":"World Bank: Air pollution deaths cost global economy us\\$225 billion (2016). https:\/\/www.worldbank.org\/en\/news\/press-release\/2016\/09\/08\/air-pollution-deaths-cost-global-economy-225-billion"},{"issue":"9","key":"2_CR7","doi-asserted-by":"publisher","first-page":"647","DOI":"10.1038\/nclimate3354","volume":"7","author":"RA Silva","year":"2017","unstructured":"Silva, R.A., et al.: Future global mortality from changes in air pollution attributable to climate change. Nature climate change 7(9), 647\u2013651 (2017)","journal-title":"Nature climate change"},{"issue":"4","key":"2_CR8","doi-asserted-by":"publisher","first-page":"626","DOI":"10.3390\/ijerph15040626","volume":"15","author":"GS Martinez","year":"2018","unstructured":"Martinez, G.S., Spadaro, J.V., Chapizanis, D., Kendrovski, V., Kochubovski, M., Mudu, P.: Health impacts and economic costs of air pollution in the metropolitan area of Skopje. Int. J. Environ. Res. Public Health 15(4), 626 (2018)","journal-title":"Int. J. Environ. Res. Public Health"},{"key":"2_CR9","unstructured":"EAA: Air quality Europe - 2019 report (2019). https:\/\/www.eea.europa.eu\/publications\/air-quality-in-europe-2019"},{"key":"2_CR10","doi-asserted-by":"publisher","first-page":"222","DOI":"10.1016\/j.envsoft.2017.11.031","volume":"100","author":"B Yeganeh","year":"2018","unstructured":"Yeganeh, B., Hewson, M.G., Clifford, S., Tavassoli, A., Knibbs, L.D., Morawska, L.: Estimating the spatiotemporal variation of no2 concentration using an adaptive neuro-fuzzy inference system. Environ. Model. Softw. 100, 222\u2013235 (2018)","journal-title":"Environ. Model. Softw."},{"issue":"9919","key":"2_CR11","doi-asserted-by":"publisher","first-page":"785","DOI":"10.1016\/S0140-6736(13)62158-3","volume":"383","author":"R Beelen","year":"2014","unstructured":"Beelen, R., et al.: Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre escape project. Lancet 383(9919), 785\u2013795 (2014)","journal-title":"Lancet"},{"key":"2_CR12","doi-asserted-by":"publisher","first-page":"15","DOI":"10.5194\/isprs-annals-IV-4-W2-15-2017","volume":"4","author":"J Fan","year":"2017","unstructured":"Fan, J., Li, Q., Hou, J., Feng, X., Karimian, H., Lin, S.: A spatiotemporal prediction framework for air pollution based on deep RNN. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 4, 15 (2017)","journal-title":"ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci."},{"key":"2_CR13","doi-asserted-by":"crossref","unstructured":"Sendra, S., Garcia-Navas, J.L., Romero-Diaz, P., Lloret, J.: Collaborative lora-based sensor network for pollution monitoring in smart cities. In: 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), pp. 318\u2013323. IEEE (2019)","DOI":"10.1109\/FMEC.2019.8795321"},{"issue":"3","key":"2_CR14","doi-asserted-by":"publisher","first-page":"5577","DOI":"10.1109\/JIOT.2019.2903821","volume":"6","author":"S Dhingra","year":"2019","unstructured":"Dhingra, S., Madda, R.B., Gandomi, A.H., Patan, R., Daneshmand, M.: Internet of things mobile-air pollution monitoring system (IoT-Mobair). IEEE Internet Things J. 6(3), 5577\u20135584 (2019)","journal-title":"IEEE Internet Things J."},{"key":"2_CR15","doi-asserted-by":"crossref","unstructured":"Ali, H., Soe, J., Weller, S.R.: A real-time ambient air quality monitoring wireless sensor network for schools in smart cities. In: 2015 IEEE First International Smart Cities Conference (ISC2), pp. 1\u20136. IEEE (2015)","DOI":"10.1109\/ISC2.2015.7366163"},{"key":"2_CR16","doi-asserted-by":"crossref","unstructured":"Kiruthika, R., Umamakeswari, A.: Low cost pollution control and air quality monitoring system using Raspberry Pi for Internet of Things. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 2319\u20132326. IEEE (2017)","DOI":"10.1109\/ICECDS.2017.8389867"},{"key":"2_CR17","unstructured":"Jezdovi\u0107, I., Nedeljkovi\u0107, N., \u017divojinovi\u0107, L., Radenkovi\u0107, B., Labus, A.: Smart city: a system for measuring noise pollution. Smart Cities Reg. Dev. (SCRD) J. 2(1), 79\u201385 (2018)"},{"key":"2_CR18","doi-asserted-by":"crossref","unstructured":"Saha, H.N., et al.: Pollution control using internet of things (IoT). In: 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), pp. 65\u201368. IEEE (2017)","DOI":"10.1109\/IEMECON.2017.8079624"},{"issue":"2","key":"2_CR19","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1109\/JIOT.2013.2296516","volume":"1","author":"J Jin","year":"2014","unstructured":"Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city through internet of things. IEEE Internet Things J. 1(2), 112\u2013121 (2014)","journal-title":"IEEE Internet Things J."},{"issue":"9","key":"2_CR20","doi-asserted-by":"publisher","first-page":"1501","DOI":"10.3390\/s16091501","volume":"16","author":"N Zhang","year":"2016","unstructured":"Zhang, N., Chen, H., Chen, X., Chen, J.: Semantic framework of internet of things for smart cities: case studies. Sensors 16(9), 1501 (2016)","journal-title":"Sensors"},{"issue":"6","key":"2_CR21","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1109\/MIC.2016.124","volume":"20","author":"B Ahlgren","year":"2016","unstructured":"Ahlgren, B., Hidell, M., Ngai, E.C.H.: Internet of things for smart cities: interoperability and open data. IEEE Internet Comput. 20(6), 52\u201356 (2016)","journal-title":"IEEE Internet Comput."},{"issue":"1","key":"2_CR22","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1109\/JIOT.2014.2306328","volume":"1","author":"A Zanella","year":"2014","unstructured":"Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22\u201332 (2014)","journal-title":"IEEE Internet Things J."},{"issue":"3","key":"2_CR23","first-page":"1302","volume":"26","author":"T Zaree","year":"2018","unstructured":"Zaree, T., Honarvar, A.R.: Improvement of air pollution prediction in a smart city and its correlation with weather conditions using metrological big data. Turk. J. Electr. Eng. Comput. Sci. 26(3), 1302\u20131313 (2018)","journal-title":"Turk. J. Electr. Eng. Comput. Sci."},{"key":"2_CR24","doi-asserted-by":"crossref","unstructured":"Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 965\u2013973 (2018)","DOI":"10.1145\/3219819.3219822"},{"key":"2_CR25","doi-asserted-by":"crossref","unstructured":"Zheng, Y., Yi, X., Li, M., Li, R., Shan, Z., Chang, E., Li, T.: Forecasting fine-grained air quality based on big data. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2267\u20132276 (2015)","DOI":"10.1145\/2783258.2788573"},{"issue":"22","key":"2_CR26","doi-asserted-by":"publisher","first-page":"22408","DOI":"10.1007\/s11356-016-7812-9","volume":"23","author":"X Li","year":"2016","unstructured":"Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 23(22), 22408\u201322417 (2016)","journal-title":"Environ. Sci. Pollut. Res."},{"key":"2_CR27","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1016\/j.envsoft.2016.02.030","volume":"80","author":"G Corani","year":"2016","unstructured":"Corani, G., Scanagatta, M.: Air pollution prediction via multi-label classification. Environ. Model. Softw. 80, 259\u2013264 (2016)","journal-title":"Environ. Model. Softw."},{"key":"2_CR28","doi-asserted-by":"crossref","unstructured":"K\u00f6k, \u0130., \u015eim\u015fek, M.U., \u00d6zdemir, S.: A deep learning model for air quality prediction in smart cities. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1983\u20131990. IEEE (2017)","DOI":"10.1109\/BigData.2017.8258144"},{"issue":"12","key":"2_CR29","doi-asserted-by":"publisher","first-page":"2285","DOI":"10.1109\/TKDE.2018.2823740","volume":"30","author":"Z Qi","year":"2018","unstructured":"Qi, Z., Wang, T., Song, G., Hu, W., Li, X., Zhang, Z.: Deep air learning: interpolation, prediction, and feature analysis of fine-grained air quality. IEEE Trans. Knowl. Data Eng. 30(12), 2285\u20132297 (2018)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"23","key":"2_CR30","first-page":"11","volume":"44","author":"T Li","year":"2017","unstructured":"Li, T., Shen, H., Yuan, Q., Zhang, X., Zhang, L.: Estimating ground-level pm2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach. Geophys. Res. Lett. 44(23), 11\u2013985 (2017)","journal-title":"Geophys. Res. Lett."},{"key":"2_CR31","unstructured":"Martinsson, E.: WTTE-RNN: Weibull time to event recurrent neural network. Ph.D. thesis, Chalmers University Of Technology (2016)"},{"key":"2_CR32","doi-asserted-by":"publisher","first-page":"e6257","DOI":"10.7717\/peerj.6257","volume":"7","author":"MF Gensheimer","year":"2019","unstructured":"Gensheimer, M.F., Narasimhan, B.: A scalable discrete-time survival model for neural networks. PeerJ 7, e6257 (2019)","journal-title":"PeerJ"},{"key":"2_CR33","doi-asserted-by":"crossref","unstructured":"Aggarwal, K., Atan, O., Farahat, A.K., Zhang, C., Ristovski, K., Gupta, C.: Two birds with one network: unifying failure event prediction and time-to-failure modeling. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 1308\u20131317. IEEE (2018)","DOI":"10.1109\/BigData.2018.8622431"},{"key":"2_CR34","doi-asserted-by":"crossref","unstructured":"Neumann, L., Zisserman, A., Vedaldi, A.: Future event prediction: if and when. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)","DOI":"10.1109\/CVPRW.2019.00354"},{"key":"2_CR35","doi-asserted-by":"publisher","first-page":"1454","DOI":"10.1016\/j.jclepro.2016.10.006","volume":"140","author":"BLR Stojkoska","year":"2017","unstructured":"Stojkoska, B.L.R., Trivodaliev, K.V.: A review of Internet of Things for smart home: challenges and solutions. J. Clean. Prod. 140, 1454\u20131464 (2017)","journal-title":"J. Clean. Prod."}],"container-title":["Communications in Computer and Information Science","ICT Innovations 2020. Machine Learning and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-62098-1_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T18:30:29Z","timestamp":1619289029000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-62098-1_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030620974","9783030620981"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-62098-1_2","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"30 October 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICT Innovations","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on ICT Innovations","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Skopje","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"North Macedonia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ictinnovations2020a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ictinnovations.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"60","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"20% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to the COVID-19 pandemic the conference was held online.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}