{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T00:19:32Z","timestamp":1726100372940},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030618339"},{"type":"electronic","value":"9783030618346"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-61834-6_5","type":"book-chapter","created":{"date-parts":[[2020,10,7]],"date-time":"2020-10-07T04:33:06Z","timestamp":1602045186000},"page":"48-59","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Machine Learning for Cup Coffee Quality Prediction from Green and Roasted Coffee Beans Features"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8854-7585","authenticated-orcid":false,"given":"Javier Andr\u00e9s","family":"Suarez-Pe\u00f1a","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1240-5913","authenticated-orcid":false,"given":"Hugo Fabi\u00e1n","family":"Lobaton-Garc\u00eda","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2581-277X","authenticated-orcid":false,"given":"Jose Ignacio","family":"Rodr\u00edguez-Molano","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3252-1508","authenticated-orcid":false,"given":"William Camilo","family":"Rodriguez-Vazquez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,10,8]]},"reference":[{"key":"5_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/B978-0-12-803520-7.00018-9","volume-title":"Sensory Evaluation-Profiling and Preferences","author":"E Thomas","year":"2017","unstructured":"Thomas, E., Puget, S., Valentin, D., Songer, P.: Sensory Evaluation-Profiling and Preferences. Elsevier Inc., London (2017)"},{"key":"5_CR2","unstructured":"Salamanca, C.: M\u00e9todos Estad\u00edsticos Para Evaluar La Calidad Del Caf\u00e9. Universitat de Girona (2015)"},{"key":"5_CR3","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1016\/j.jfoodeng.2015.10.009","volume":"171","author":"EM de Oliveira","year":"2015","unstructured":"de Oliveira, E.M., Leme, D.S., Barbosa, B.H.G., Rodarte, M.P.: A computer vision system for coffee beans classification based on computational intelligence techniques. J. Food Eng. 171, 22\u201327 (2015). https:\/\/doi.org\/10.1016\/j.jfoodeng.2015.10.009","journal-title":"J. Food Eng."},{"key":"5_CR4","doi-asserted-by":"publisher","unstructured":"Faridah, F., Parikesit, G.O.F., Ferdiansjah, F.: Coffee bean grade determination based on image parameter. TELKOMNIKA (Telecommun. Comput. Electron. Control) 9, 547\u2013554 (2011). https:\/\/doi.org\/10.12928\/telkomnika.v9i3.747","DOI":"10.12928\/telkomnika.v9i3.747"},{"key":"5_CR5","unstructured":"Montes, N.: Segmentaci\u00f3n De Im\u00e1genes De Frutos De Caf\u00e9 En El Proceso De Beneficio. Universidad Nacional de Colombia, sede Manizales (2003)"},{"key":"5_CR6","doi-asserted-by":"crossref","unstructured":"Ruge, I.A., Pinzon, A.S., Moreno, D.E.: Sistema de selecci\u00f3n electr\u00f3nico de caf\u00e9 excelso basado en el color mediante procesamiento de im\u00e1genes. Rev Tecnura 16, 84\u201393 (2012). http:\/\/dx.doi.org\/10.14483\/udistrital.jour.tecnura.2012.4.a06","DOI":"10.14483\/udistrital.jour.tecnura.2012.4.a06"},{"key":"5_CR7","first-page":"315","volume":"61","author":"PJ Ramos Giraldo","year":"2010","unstructured":"Ramos Giraldo, P.J., Sanz Uribe, J.R., Oliveros Tasc\u00f3n, C.E.: Identificaci\u00f3n y clasificaci\u00f3n de frutos de caf\u00e9 en tiempo real, a trav\u00e9s de la medici\u00f3n de color. Cenicaf\u00e9 61, 315\u2013326 (2010)","journal-title":"Cenicaf\u00e9"},{"key":"5_CR8","first-page":"37","volume":"1","author":"JJ Carvajal","year":"2006","unstructured":"Carvajal, J.J., Aristiz\u00e1bal, I.D., Oliveros, C.E., Mej\u00eda, J.W.: Colorimetr\u00eda del Fruto de Caf\u00e9 (Coffea arabica L.) Durante su Desarrollo y Maduraci\u00f3n. Rev Fac Nac Agron Medell\u00edn 1, 37\u201348 (2006)","journal-title":"Rev Fac Nac Agron Medell\u00edn"},{"key":"5_CR9","unstructured":"Tobijaszewska, B., Mills, R., Jons, J.: El uso de la espectrometr\u00eda para la medici\u00f3n simult\u00e1nea del color y la composici\u00f3n en muestras de alimentos. In: FOSS (2018). https:\/\/www.fossanalytics.com\/-\/media\/files\/documents\/papers\/meat-segment\/using-spectrometry-for-simultaneous-measurement_es.pdf"},{"key":"5_CR10","first-page":"273","volume-title":"Machine Learning","author":"C Cortes","year":"1995","unstructured":"Cortes, C., Vapnik, V.: Support-vector networks. In: Saitta, L. (ed.) Machine Learning, pp. 273\u2013297. KlugerAcademic Publishers, Boston (1995)"},{"key":"5_CR11","unstructured":"Nascimento, R.F.F., Alc\u00e2ntara, E.H., Kampel, M., et al.: O algoritmo SVM: avalia\u00e7\u00e3o da separa\u00e7\u00e3o \u00f3tima de classes em imagens CCD-CBERS-2. XIV Simp\u00f3sio Bras Sensoriamento Remoto 2079\u20132086 (2009)"},{"key":"5_CR12","unstructured":"Gala, Y.: Algoritmos SVM para problemas sobre big data. Universidad Autonoma de Madrid (2013)"},{"key":"5_CR13","doi-asserted-by":"publisher","unstructured":"Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2 (2011). https:\/\/doi.org\/10.1145\/1961189.1961199","DOI":"10.1145\/1961189.1961199"},{"key":"5_CR14","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9781107298019","volume-title":"Understanding Machine Learning: From Theory to Algorithms","author":"S Shalev-Shwartz","year":"2014","unstructured":"Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, New York (2014)"},{"key":"5_CR15","doi-asserted-by":"crossref","unstructured":"Gallo, C.: Artificial Neural Networks: tutorial (2015)","DOI":"10.4018\/978-1-4666-5888-2.ch626"},{"key":"5_CR16","doi-asserted-by":"publisher","DOI":"10.1016\/0893-6080(89)90020-8","author":"K Hornik","year":"1989","unstructured":"Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. (1989). https:\/\/doi.org\/10.1016\/0893-6080(89)90020-8","journal-title":"Neural Netw."},{"key":"5_CR17","unstructured":"Chollet, F.: Keras (2015) (2017). http:\/\/keras.io\/"},{"key":"5_CR18","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825\u20132830 (2011)","journal-title":"J. Mach. Learn. Res."},{"key":"5_CR19","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1145\/1882471.1882479","volume":"12","author":"G Forman","year":"2009","unstructured":"Forman, G., Forman, G., Scholz, M., Scholz, M.: Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. HP Labs 12, 49\u201357 (2009). https:\/\/doi.org\/10.1145\/1882471.1882479","journal-title":"HP Labs"},{"key":"5_CR20","doi-asserted-by":"publisher","first-page":"8375","DOI":"10.1109\/ACCESS.2016.2628407","volume":"4","author":"YD Zhang","year":"2016","unstructured":"Zhang, Y.D., Yang, Z.J., Lu, H.M., et al.: Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access 4, 8375\u20138385 (2016). https:\/\/doi.org\/10.1109\/ACCESS.2016.2628407","journal-title":"IEEE Access"},{"key":"5_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1080\/02331931003692557","volume":"1","author":"SB Kotsiantis","year":"2006","unstructured":"Kotsiantis, S.B., Kanellopoulos, D.: Data preprocessing for supervised leaning. Int. J. Comput. Sci. 1, 1\u20137 (2006). https:\/\/doi.org\/10.1080\/02331931003692557","journal-title":"Int. J. Comput. Sci."},{"key":"5_CR22","doi-asserted-by":"publisher","unstructured":"Ferreira, E.J., Pereira, R.C.T., Delbem, A.C.B., et al.: Random subspace method for analysing coffee with electronic tongue. Electron. Lett. (2017) https:\/\/doi.org\/10.1049\/el:20071182","DOI":"10.1049\/el:20071182"},{"key":"5_CR23","unstructured":"Dunne, R., Campbell, N.: On the pairing of the Softmax activation and cross-entropy penalty functions and the derivation of the Softmax activation function. In: Proceedings of 8th Australian Conference Neural Networks (1997). https:\/\/doi.org\/10.1.1.49.6403"},{"key":"5_CR24","unstructured":"Agarap, A.F.: Deep learning using rectified linear units (ReLU), pp. 2\u20138 (2018)"},{"key":"5_CR25","doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of IEEE International Conference Computer Vision 2015, pp. 1026\u20131034 (2015). https:\/\/doi.org\/10.1109\/ICCV.2015.123","DOI":"10.1109\/ICCV.2015.123"},{"key":"5_CR26","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, pp. 1\u201315 (2014)"}],"container-title":["Communications in Computer and Information Science","Applied Computer Sciences in Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-61834-6_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T02:43:19Z","timestamp":1619232199000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-61834-6_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030618339","9783030618346"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-61834-6_5","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"8 October 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"WEA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Workshop on Engineering Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bogota","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Colombia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"woea2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ieee.udistrital.edu.co\/wea2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"136","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.68","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.41","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to the COVID-19 pandemic the conference was held online","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}