{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:21:47Z","timestamp":1742912507693,"version":"3.40.3"},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030617042"},{"type":"electronic","value":"9783030617059"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-61705-9_8","type":"book-chapter","created":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T16:03:54Z","timestamp":1604505834000},"page":"86-94","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Clustering and Regression to Impute Missing Values of Robot Performance"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-1614-9075","authenticated-orcid":false,"given":"\u00c1ngel","family":"Arroyo","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7289-4689","authenticated-orcid":false,"given":"Nu\u00f1o","family":"Basurto","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5567-9194","authenticated-orcid":false,"given":"Carlos","family":"Cambra","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2444-5384","authenticated-orcid":false,"given":"\u00c1lvaro","family":"Herrero","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,4]]},"reference":[{"key":"8_CR1","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1214\/09-SS054","volume":"4","author":"S Arlot","year":"2010","unstructured":"Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40\u201379 (2010). \nhttps:\/\/doi.org\/10.1214\/09-SS054","journal-title":"Stat. Surv."},{"key":"8_CR2","doi-asserted-by":"crossref","unstructured":"Basurto, N., Cambra, C., Herrero, \u00c1.: Improving the detection of robot anomalies by handling data irregularities. Neurocomputing (2020)","DOI":"10.1016\/j.neucom.2020.05.101"},{"key":"8_CR3","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/978-3-030-20055-8_23","volume-title":"14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019)","author":"N Basurto","year":"2020","unstructured":"Basurto, N., Herrero, \u00c1.: Data selection to improve anomaly detection in a component-based robot. In: Mart\u00ednez \u00c1lvarez, F., Troncoso Lora, A., S\u00e1ez Mu\u00f1oz, J.A., Quinti\u00e1n, H., Corchado, E. (eds.) SOCO 2019. AISC, vol. 950, pp. 241\u2013250. Springer, Cham (2020). \nhttps:\/\/doi.org\/10.1007\/978-3-030-20055-8_23"},{"key":"8_CR4","doi-asserted-by":"publisher","first-page":"674","DOI":"10.1016\/j.patcog.2018.03.008","volume":"81","author":"S Das","year":"2018","unstructured":"Das, S., Datta, S., Chaudhuri, B.B.: Handling data irregularities in classification: foundations, trends, and future challenges. Pattern Recogn. 81, 674\u2013693 (2018). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2018.03.008","journal-title":"Pattern Recogn."},{"key":"8_CR5","unstructured":"Doan, C.D., Liong, S.: Generalization for multilayer neural network Bayesian regularization or early stopping. In: Proceedings of Asia Pacific Association of Hydrology and Water Resources 2nd Conference, pp. 5\u20138 (2004)"},{"issue":"2","key":"8_CR6","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1007\/s00521-009-0295-6","volume":"19","author":"PJ Garc\u00eda-Laencina","year":"2010","unstructured":"Garc\u00eda-Laencina, P.J., Sancho-G\u00f3mez, J.L., Figueiras-Vidal, A.R.: Pattern classification with missing data: a review. Neural Comput. Appl. 19(2), 263\u2013282 (2010). \nhttps:\/\/doi.org\/10.1007\/s00521-009-0295-6","journal-title":"Neural Comput. Appl."},{"issue":"14","key":"8_CR7","doi-asserted-by":"publisher","first-page":"2627","DOI":"10.1016\/S1352-2310(97)00447-0","volume":"32","author":"M Gardner","year":"1998","unstructured":"Gardner, M., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 32(14), 2627\u20132636 (1998). \nhttps:\/\/doi.org\/10.1016\/S1352-2310(97)00447-0","journal-title":"Atmos. Environ."},{"key":"8_CR8","doi-asserted-by":"publisher","unstructured":"Hecht-Nielsen, R.: III. 3 - theory of the backpropagation neural network. In: Wechsler, H. (ed.) Neural Networks for Perception, pp. 65\u201393. Academic Press (1992). \nhttps:\/\/doi.org\/10.1016\/B978-0-12-741252-8.50010-8","DOI":"10.1016\/B978-0-12-741252-8.50010-8"},{"issue":"1","key":"8_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1080\/01969722.2019.1560961","volume":"50","author":"\u00c1 Herrero","year":"2019","unstructured":"Herrero, \u00c1., Jim\u00e9nez, A.: Improving the management of industrial and environmental enterprises by means of soft computing. Cybern. Syst. 50(1), 1\u20132 (2019)","journal-title":"Cybern. Syst."},{"key":"8_CR10","unstructured":"IFR: summary - OUTLOOK on world robotics report 2019 by IFR. \nhttps:\/\/ifr.org\/ifr-press-releases\/news\/summary-outlook-on-world-robotics-report-2019-by-ifr"},{"issue":"3","key":"8_CR11","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1145\/331499.331504","volume":"31","author":"AK Jain","year":"1999","unstructured":"Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264\u2013323 (1999). \nhttps:\/\/doi.org\/10.1145\/331499.331504","journal-title":"ACM Comput. Surv."},{"issue":"4","key":"8_CR12","doi-asserted-by":"publisher","first-page":"e12456","DOI":"10.1111\/exsy.12456","volume":"36","author":"A Jimenez","year":"2019","unstructured":"Jimenez, A., Herrero, A.: Soft computing applications in the field of industrial and environmental enterprises. Expert Syst. 36(4), e12456 (2019). \nhttps:\/\/doi.org\/10.1111\/exsy.12456","journal-title":"Expert Syst."},{"key":"8_CR13","doi-asserted-by":"publisher","unstructured":"Jove, E., Casteleiro-Roca, J.L., Quinti\u00e1n, H., Simi\u0107, D., M\u00e9ndez-P\u00e9rez, J.A., Luis Calvo-Rolle, J.: Anomaly detection based on one-class intelligent techniques over a control level plant. Log. J. IGPL (2020). \nhttps:\/\/doi.org\/10.1093\/jigpal\/jzz057","DOI":"10.1093\/jigpal\/jzz057"},{"key":"8_CR14","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1016\/j.neucom.2018.02.066","volume":"291","author":"SH Kasaei","year":"2018","unstructured":"Kasaei, S.H., Oliveira, M., Lim, G.H., Lopes, L.S., Tom\u00e9, A.M.: Towards lifelong assistive robotics: a tight coupling between object perception and manipulation. Neurocomputing 291, 151\u2013166 (2018). \nhttps:\/\/doi.org\/10.1016\/j.neucom.2018.02.066","journal-title":"Neurocomputing"},{"issue":"1","key":"8_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3146389","volume":"51","author":"E Khalastchi","year":"2018","unstructured":"Khalastchi, E., Kalech, M.: On fault detection and diagnosis in robotic systems. ACM Comput. Surv. 51(1), 1\u201324 (2018). \nhttps:\/\/doi.org\/10.1145\/3146389","journal-title":"ACM Comput. Surv."},{"key":"8_CR16","unstructured":"MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281\u2013297 (1967)"},{"key":"8_CR17","volume-title":"Applied Linear Statistical Models","author":"J Neter","year":"1996","unstructured":"Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied Linear Statistical Models, vol. 4. Irwin, Chicago (1996)"},{"issue":"1","key":"8_CR18","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1093\/biomet\/6.1.59","volume":"6","author":"K Pearson","year":"1908","unstructured":"Pearson, K., Lee, A.: On the generalised probable error in multiple normal correlation. Biometrika 6(1), 59\u201368 (1908). \nhttp:\/\/www.jstor.org\/stable\/2331556","journal-title":"Biometrika"},{"key":"8_CR19","doi-asserted-by":"publisher","unstructured":"Twala, B.: Robot execution failure prediction using incomplete data. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1518\u20131523, December 2009. \nhttps:\/\/doi.org\/10.1109\/ROBIO.2009.5420900","DOI":"10.1109\/ROBIO.2009.5420900"},{"key":"8_CR20","doi-asserted-by":"publisher","unstructured":"Wienke, J., Wrede, S.: A middleware for collaborative research in experimental robotics. In: 2011 IEEE\/SICE International Symposium on System Integration (SII), pp. 1183\u20131190, December 2011. \nhttps:\/\/doi.org\/10.1109\/SII.2011.6147617","DOI":"10.1109\/SII.2011.6147617"},{"key":"8_CR21","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1007\/978-3-319-40379-3_35","volume-title":"Towards Autonomous Robotic Systems","author":"J Wienke","year":"2016","unstructured":"Wienke, J., Meyer zu Borgsen, S., Wrede, S.: A data set for fault detection research on component-based robotic systems. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 339\u2013350. Springer, Cham (2016). \nhttps:\/\/doi.org\/10.1007\/978-3-319-40379-3_35"},{"key":"8_CR22","doi-asserted-by":"publisher","unstructured":"Wienke, J., Wrede, S.: A fault detection data set for performance bugs in component-based robotic systems. \nhttps:\/\/doi.org\/10.4119\/unibi\/2900911","DOI":"10.4119\/unibi\/2900911"},{"key":"8_CR23","doi-asserted-by":"publisher","unstructured":"Wienke, J., Wrede, S.: Autonomous fault detection for performance bugs in component-based robotic systems. In: 2016 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3291\u20133297. IEEE (2016). \nhttps:\/\/doi.org\/10.1109\/IROS.2016.7759507","DOI":"10.1109\/IROS.2016.7759507"},{"key":"8_CR24","unstructured":"University of Yale: Linear regression (2017). \nhttp:\/\/www.stat.yale.edu\/Courses\/1997-98\/101\/linreg.htm"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-61705-9_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T16:07:15Z","timestamp":1604506035000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-61705-9_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030617042","9783030617059"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-61705-9_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"4 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gij\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2020.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"106","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"65","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}