{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T08:51:31Z","timestamp":1743151891404,"version":"3.40.3"},"publisher-location":"Cham","reference-count":16,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030617042"},{"type":"electronic","value":"9783030617059"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-61705-9_60","type":"book-chapter","created":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T16:03:54Z","timestamp":1604505834000},"page":"718-728","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Exploratory Analysis of Radiomics Features on a Head and Neck Cancer Public Dataset"],"prefix":"10.1007","author":[{"given":"Oier","family":"Echaniz","sequence":"first","affiliation":[]},{"given":"Carlos M.","family":"Chiesa-Estomba","sequence":"additional","affiliation":[]},{"given":"Manuel","family":"Gra\u00f1a","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,4]]},"reference":[{"issue":"12","key":"60_CR1","doi-asserted-by":"publisher","first-page":"1636","DOI":"10.1001\/jamaoncol.2016.2631","volume":"2","author":"HJWL Aerts","year":"2016","unstructured":"Aerts, H.J.W.L.: The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2(12), 1636\u20131642 (2016)","journal-title":"JAMA Oncol."},{"issue":"1","key":"60_CR2","doi-asserted-by":"publisher","first-page":"4006","DOI":"10.1038\/ncomms5006","volume":"5","author":"HJWL Aerts","year":"2014","unstructured":"Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5(1), 4006 (2014)","journal-title":"Nat. Commun."},{"key":"60_CR3","unstructured":"Cardenas, C., Mohamed, A., Sharp, G., Gooding, M., Veeraraghavan, H., Yang, J.: Data from AAPM RT-MAC grand challenge 2019. Technical report, The Cancer Imaging Archive (2019)"},{"issue":"10","key":"60_CR4","doi-asserted-by":"publisher","first-page":"1409","DOI":"10.3390\/cancers11101409","volume":"11","author":"CM Chiesa-Estomba","year":"2019","unstructured":"Chiesa-Estomba, C.M., Echaniz, O., Larruscain, E., Gonzalez-Garcia, J.A., Sistiaga-Suarez, J.A., Gra\u00f1a, M.: Radiomics and texture analysis in laryngeal cancer. Looking for new frontiers in precision medicine through imaging analysis. Cancers 11(10), 1409 (2019)","journal-title":"Cancers"},{"issue":"07","key":"60_CR5","doi-asserted-by":"publisher","first-page":"2050025","DOI":"10.1142\/S0129065720500252","volume":"30","author":"J De Lope","year":"2020","unstructured":"De Lope, J., Gra\u00f1a, M.: Behavioral activity recognition based on gaze ethograms. Int. J. Neural Syst. 30(07), 2050025 (2020). PMID: 32522069","journal-title":"Int. J. Neural Syst."},{"issue":"5","key":"60_CR6","doi-asserted-by":"publisher","first-page":"E359","DOI":"10.1002\/ijc.29210","volume":"136","author":"J Ferlay","year":"2015","unstructured":"Ferlay, J., et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in globocan 2012. Int. J. Cancer 136(5), E359\u2013E386 (2015)","journal-title":"Int. J. Cancer"},{"issue":"2","key":"60_CR7","doi-asserted-by":"publisher","first-page":"563","DOI":"10.1148\/radiol.2015151169","volume":"278","author":"RJ Gillies","year":"2016","unstructured":"Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: Images are more than pictures, they are data. Radiology 278(2), 563\u2013577 (2016). PMID: 26579733","journal-title":"Radiology"},{"key":"60_CR8","doi-asserted-by":"publisher","first-page":"174","DOI":"10.3389\/fonc.2019.00174","volume":"9","author":"P Giraud","year":"2019","unstructured":"Giraud, P., et al.: Radiomics and machine learning for radiotherapy in head and neck cancers. Front. Oncol. 9, 174 (2019)","journal-title":"Front. Oncol."},{"key":"60_CR9","doi-asserted-by":"crossref","unstructured":"G\u00f3rriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing (2020)","DOI":"10.1016\/j.neucom.2020.05.078"},{"issue":"2","key":"60_CR10","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1002\/hed.25433","volume":"41","author":"C Guezennec","year":"2019","unstructured":"Guezennec, C., et al.: Prognostic value of textural indices extracted from pretherapeutic 18-F FDG-PET\/CT in head and neck squamous cell carcinoma. Head Neck 41(2), 495\u2013502 (2019)","journal-title":"Head Neck"},{"issue":"9","key":"60_CR11","doi-asserted-by":"publisher","first-page":"1234","DOI":"10.1016\/j.mri.2012.06.010","volume":"30","author":"V Kumar","year":"2012","unstructured":"Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234\u20131248 (2012). Quantitative Imaging in Cancer","journal-title":"Magn. Reson. Imaging"},{"key":"60_CR12","unstructured":"Global Burden of Disease Cancer Collaboration: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 3(4), 524\u2013548 (2017)"},{"key":"60_CR13","doi-asserted-by":"publisher","first-page":"272","DOI":"10.3389\/fonc.2015.00272","volume":"5","author":"C Parmar","year":"2015","unstructured":"Parmar, C., Grossmann, P., Rietveld, D., Rietbergen, M.M., Lambin, P., Aerts, H.J.W.L.: Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front. Oncol. 5, 272 (2015)","journal-title":"Front. Oncol."},{"issue":"S 01","key":"60_CR14","doi-asserted-by":"publisher","first-page":"S114","DOI":"10.1055\/s-0043-121964","volume":"97","author":"K Scheckenbach","year":"2018","unstructured":"Scheckenbach, K.: Radiomics: big data statt biopsie in der Zukunft? Laryngo-Rhino-Otol 97(S 01), S114\u2013S141 (2018)","journal-title":"Laryngo-Rhino-Otol"},{"issue":"21","key":"60_CR15","doi-asserted-by":"publisher","first-page":"e104","DOI":"10.1158\/0008-5472.CAN-17-0339","volume":"77","author":"JJM van Griethuysen","year":"2017","unstructured":"van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104\u2013e107 (2017)","journal-title":"Cancer Res."},{"key":"60_CR16","unstructured":"Wee, L., Dekker, A.: Data from head-neck-radiomics-HN1 [data set]. Technical report, The Cancer Imaging Archive (2019)"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-61705-9_60","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,11]],"date-time":"2023-10-11T11:49:11Z","timestamp":1697024951000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-61705-9_60"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030617042","9783030617059"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-61705-9_60","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"4 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gij\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2020.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"106","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"65","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}