{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T00:25:57Z","timestamp":1743121557646,"version":"3.40.3"},"publisher-location":"Cham","reference-count":45,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030617042"},{"type":"electronic","value":"9783030617059"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-61705-9_5","type":"book-chapter","created":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T16:03:54Z","timestamp":1604505834000},"page":"49-60","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Fast SSVEP-Based Brain-Computer Interface"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6493-7770","authenticated-orcid":false,"given":"Tania","family":"Jorajur\u00eda","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3431-1256","authenticated-orcid":false,"given":"Marisol","family":"G\u00f3mez","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3740-049X","authenticated-orcid":false,"given":"Carmen","family":"Vidaurre","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,4]]},"reference":[{"issue":"8","key":"5_CR1","doi-asserted-by":"publisher","first-page":"14601","DOI":"10.3390\/s140814601","volume":"14","author":"M Ahn","year":"2014","unstructured":"Ahn, M., Lee, M., Choi, J., Jun, S.: A review of brain-computer interface games and an opinion survey from researchers, developers and users. Sensors 14(8), 14601\u201314633 (2014). \nhttps:\/\/doi.org\/10.3390\/s140814601","journal-title":"Sensors"},{"issue":"4","key":"5_CR2","doi-asserted-by":"publisher","first-page":"046002","DOI":"10.1088\/1741-2560\/6\/4\/046002","volume":"6","author":"G Bin","year":"2009","unstructured":"Bin, G., Gao, X., Yan, Z., Hong, B., Gao, S.: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J. Neural Eng. 6(4), 046002 (2009). \nhttps:\/\/doi.org\/10.1088\/1741-2560\/6\/4\/046002","journal-title":"J. Neural Eng."},{"issue":"2","key":"5_CR3","doi-asserted-by":"publisher","first-page":"814","DOI":"10.1016\/j.neuroimage.2010.06.048","volume":"56","author":"B Blankertz","year":"2011","unstructured":"Blankertz, B., Lemm, S., Treder, M., Haufe, S., M\u00fcller, K.R.: Single-trial analysis and classification of ERP components-a tutorial. NeuroImage 56(2), 814\u2013825 (2011). \nhttps:\/\/doi.org\/10.1016\/j.neuroimage.2010.06.048","journal-title":"NeuroImage"},{"key":"5_CR4","doi-asserted-by":"publisher","first-page":"198","DOI":"10.3389\/fnins.2010.00198","volume":"4","author":"B Blankertz","year":"2010","unstructured":"Blankertz, B., et al.: The berlin brain-computer interface: non-medical uses of BCI technology. Front. Neurosci. 4, 198 (2010). \nhttps:\/\/doi.org\/10.3389\/fnins.2010.00198","journal-title":"Front. Neurosci."},{"key":"5_CR5","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1016\/j.jneumeth.2015.05.014","volume":"253","author":"L Cao","year":"2015","unstructured":"Cao, L., Ju, Z., Li, J., Jian, R., Jiang, C.: Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces. J. Neurosci. Methods 253, 10\u201317 (2015). \nhttps:\/\/doi.org\/10.1016\/j.jneumeth.2015.05.014","journal-title":"J. Neurosci. Methods"},{"issue":"11","key":"5_CR6","doi-asserted-by":"publisher","first-page":"1032","DOI":"10.1016\/S1474-4422(08)70223-0","volume":"7","author":"JJ Daly","year":"2008","unstructured":"Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11), 1032\u20131043 (2008). \nhttps:\/\/doi.org\/10.1016\/S1474-4422(08)70223-0","journal-title":"Lancet Neurol."},{"issue":"3","key":"5_CR7","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1113\/jphysiol.2006.123067","volume":"579","author":"BH Dobkin","year":"2007","unstructured":"Dobkin, B.H.: Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 579(3), 637\u2013642 (2007). \nhttps:\/\/doi.org\/10.1113\/jphysiol.2006.123067","journal-title":"J. Physiol."},{"key":"5_CR8","doi-asserted-by":"publisher","unstructured":"Farooq, M., Dehzangi, O.: High accuracy wearable SSVEP detection using feature profiling and dimensionality reduction. In: 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 161\u2013164. IEEE (2017). \nhttps:\/\/doi.org\/10.1109\/BSN.2017.7936032","DOI":"10.1109\/BSN.2017.7936032"},{"issue":"4","key":"5_CR9","doi-asserted-by":"publisher","first-page":"742","DOI":"10.1109\/TBME.2006.889160","volume":"54","author":"O Friman","year":"2007","unstructured":"Friman, O., Volosyak, I., Graser, A.: Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans. Biomed. Eng. 54(4), 742\u2013750 (2007). \nhttps:\/\/doi.org\/10.1109\/TBME.2006.889160","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"2","key":"5_CR10","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1109\/TNSRE.2003.814449","volume":"11","author":"X Gao","year":"2003","unstructured":"Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 137\u2013140 (2003). \nhttps:\/\/doi.org\/10.1109\/TNSRE.2003.814449","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"1","key":"5_CR11","doi-asserted-by":"publisher","first-page":"e0191673","DOI":"10.1371\/journal.pone.0191673","volume":"13","author":"Z \u0130\u015fcan","year":"2018","unstructured":"\u0130\u015fcan, Z., Nikulin, V.V.: Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations. PLoS ONE 13(1), e0191673 (2018). \nhttps:\/\/doi.org\/10.1371\/journal.pone.0191673","journal-title":"PLoS ONE"},{"key":"5_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"674","DOI":"10.1007\/978-3-642-02478-8_84","volume-title":"Bio-Inspired Systems: Computational and Ambient Intelligence","author":"M Kawanabe","year":"2009","unstructured":"Kawanabe, M., Vidaurre, C., Blankertz, B., M\u00fcller, K.-R.: A maxmin approach to optimize spatial filters for EEG single-trial classification. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 674\u2013682. Springer, Heidelberg (2009). \nhttps:\/\/doi.org\/10.1007\/978-3-642-02478-8_84"},{"issue":"1","key":"5_CR13","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1111\/j.1749-6632.2008.04122.x","volume":"1157","author":"A K\u00fcbler","year":"2009","unstructured":"K\u00fcbler, A., Furdea, A., Halder, S., Hammer, E.M., Nijboer, F., Kotchoubey, B.: A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann. N. Y. Acad. Sci. 1157(1), 90\u2013100 (2009). \nhttps:\/\/doi.org\/10.1111\/j.1749-6632.2008.04122.x","journal-title":"Ann. N. Y. Acad. Sci."},{"issue":"10","key":"5_CR14","doi-asserted-by":"publisher","first-page":"1775","DOI":"10.1212\/01.WNL.0000158616.43002.6D","volume":"64","author":"A K\u00fcbler","year":"2005","unstructured":"K\u00fcbler, A., et al.: Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10), 1775\u20131777 (2005). \nhttps:\/\/doi.org\/10.1212\/01.WNL.0000158616.43002.6D","journal-title":"Neurology"},{"issue":"4","key":"5_CR15","doi-asserted-by":"publisher","first-page":"110","DOI":"10.3905\/jpm.2004.110","volume":"30","author":"O Ledoit","year":"2004","unstructured":"Ledoit, O., Wolf, M.: Honey, I shrunk the sample covariance matrix. J. Portfolio Manag. 30(4), 110\u2013119 (2004). \nhttps:\/\/doi.org\/10.3905\/jpm.2004.110","journal-title":"J. Portfolio Manag."},{"issue":"2","key":"5_CR16","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1016\/S0047-259X(03)00096-4","volume":"88","author":"O Ledoit","year":"2004","unstructured":"Ledoit, O., Wolf, M., et al.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365\u2013411 (2004)","journal-title":"J. Multivar. Anal."},{"issue":"12","key":"5_CR17","doi-asserted-by":"publisher","first-page":"2610","DOI":"10.1109\/TBME.2006.886577","volume":"53","author":"Z Lin","year":"2006","unstructured":"Lin, Z., Zhang, C., Wu, W., Gao, X.: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 53(12), 2610\u20132614 (2006). \nhttps:\/\/doi.org\/10.1109\/TBME.2006.886577","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"3","key":"5_CR18","doi-asserted-by":"publisher","first-page":"035007","DOI":"10.1088\/1741-2560\/11\/3\/035007","volume":"11","author":"R Lorenz","year":"2014","unstructured":"Lorenz, R., Pascual, J., Blankertz, B., Vidaurre, C.: Towards a holistic assessment of the user experience with hybrid BCIs. J. Neural Eng. 11(3), 035007 (2014)","journal-title":"J. Neural Eng."},{"issue":"10","key":"5_CR19","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1109\/MC.2008.409","volume":"41","author":"DJ McFarland","year":"2008","unstructured":"McFarland, D.J., Wolpaw, J.R.: Brain-computer interface operation of robotic and prosthetic devices. Computer 41(10), 52\u201356 (2008). \nhttps:\/\/doi.org\/10.1109\/MC.2008.409","journal-title":"Computer"},{"issue":"1","key":"5_CR20","doi-asserted-by":"publisher","first-page":"104","DOI":"10.1109\/TBME.2017.2694818","volume":"65","author":"M Nakanishi","year":"2017","unstructured":"Nakanishi, M., Wang, Y., Chen, X., Wang, Y.T., Gao, X., Jung, T.P.: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 65(1), 104\u2013112 (2017). \nhttps:\/\/doi.org\/10.1109\/TBME.2017.2694818","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"5_CR21","doi-asserted-by":"publisher","unstructured":"Nan, W., et al.: A comparison of minimum energy combination and canonical correlation analysis for SSVEP detection. In: 2011 5th International IEEE\/EMBS Conference on Neural Engineering, pp. 469\u2013472. IEEE (2011). \nhttps:\/\/doi.org\/10.1109\/NER.2011.5910588","DOI":"10.1109\/NER.2011.5910588"},{"key":"5_CR22","doi-asserted-by":"publisher","DOI":"10.1113\/JP278118","author":"T Nierhaus","year":"2019","unstructured":"Nierhaus, T., Vidaurre, C., Sannelli, C., Mueller, K.R., Villringer, A.: Immediate brain plasticity after one hour of brain-computer interface (BCI). J. Physiol. (2019). \nhttps:\/\/doi.org\/10.1113\/JP278118","journal-title":"J. Physiol."},{"issue":"2","key":"5_CR23","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.entcom.2009.09.007","volume":"1","author":"A Nijholt","year":"2009","unstructured":"Nijholt, A., Bos, D.P.O., Reuderink, B.: Turning shortcomings into challenges: brain-computer interfaces for games. Entertain. Comput. 1(2), 85\u201394 (2009). \nhttps:\/\/doi.org\/10.1016\/j.entcom.2009.09.007","journal-title":"Entertain. Comput."},{"key":"5_CR24","doi-asserted-by":"publisher","unstructured":"Perez, J.L.M., Cruz, A.B.: Linear discriminant analysis on brain computer interface. In: 2007 IEEE International Symposium on Intelligent Signal Processing, pp. 1\u20136. IEEE (2007). \nhttps:\/\/doi.org\/10.1109\/WISP.2007.4447590","DOI":"10.1109\/WISP.2007.4447590"},{"issue":"1","key":"5_CR25","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1016\/j.neuroimage.2005.12.003","volume":"31","author":"G Pfurtscheller","year":"2006","unstructured":"Pfurtscheller, G., Brunner, C., Schl\u00f6gl, A., Da Silva, F.L.: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153\u2013159 (2006). \nhttps:\/\/doi.org\/10.1016\/j.neuroimage.2005.12.003","journal-title":"NeuroImage"},{"issue":"3","key":"5_CR26","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1006\/jmca.1993.1030","volume":"16","author":"G Pfurtscheller","year":"1993","unstructured":"Pfurtscheller, G., Flotzinger, D., Kalcher, J.: Brain-computer interface-a new communication device for handicapped persons. J. Microcomput. Appl. 16(3), 293\u2013299 (1993). \nhttps:\/\/doi.org\/10.1006\/jmca.1993.1030","journal-title":"J. Microcomput. Appl."},{"key":"5_CR27","unstructured":"Saa, J.F.D., Gutierrez, M.S.: EEG signal classification using power spectral features and linear discriminant analysis: a brain computer interface application. In: Eighth Latin American and Caribbean Conference for Engineering and Technology, pp. 1\u20137. LACCEI, Arequipa (2010)"},{"key":"5_CR28","doi-asserted-by":"publisher","unstructured":"Sannelli, C., Vidaurre, C., M\u00fcller, K.R., Blankertz, B.: A large scale screening study with a SMR-based BCI: categorization of BCI users and differences in their SMR activity. PLoS One 14(1) (2019). \nhttps:\/\/doi.org\/10.1371\/journal.pone.0207351","DOI":"10.1371\/journal.pone.0207351"},{"key":"5_CR29","doi-asserted-by":"publisher","unstructured":"Sch\u00e4fer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1) (2005). \nhttps:\/\/doi.org\/10.2202\/1544-6115.1175","DOI":"10.2202\/1544-6115.1175"},{"issue":"3","key":"5_CR30","doi-asserted-by":"publisher","first-page":"242","DOI":"10.1016\/j.biopsycho.2006.04.007","volume":"73","author":"EW Sellers","year":"2006","unstructured":"Sellers, E.W., Krusienski, D.J., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol. Psychol. 73(3), 242\u2013252 (2006). \nhttps:\/\/doi.org\/10.1016\/j.biopsycho.2006.04.007","journal-title":"Biol. Psychol."},{"issue":"3","key":"5_CR31","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1007\/s10548-006-0267-4","volume":"18","author":"R Srinivasan","year":"2006","unstructured":"Srinivasan, R., Bibi, F.A., Nunez, P.L.: Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency. Brain Topogr. 18(3), 167\u2013187 (2006). \nhttps:\/\/doi.org\/10.1007\/s10548-006-0267-4","journal-title":"Brain Topogr."},{"key":"5_CR32","doi-asserted-by":"publisher","unstructured":"Vecchiato, G., et al.: The study of brain activity during the observation of commercial advertsing by using high resolution EEG techniques. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 57\u201360. IEEE (2009). \nhttps:\/\/doi.org\/10.1109\/IEMBS.2009.5335045","DOI":"10.1109\/IEMBS.2009.5335045"},{"key":"5_CR33","doi-asserted-by":"publisher","first-page":"1195","DOI":"10.1016\/j.medengphy.2016.06.010","volume":"38","author":"C Vidaurre","year":"2016","unstructured":"Vidaurre, C., Klauer, C., Schauer, T., Ramos-Murguialday, A., Mueller, K.R.: EEG-based BCI for the linear control of an upper-limb neuroprosthesis. Med. Eng. Phys. 38, 1195\u20131204 (2016). \nhttps:\/\/doi.org\/10.1016\/j.medengphy.2016.06.010","journal-title":"Med. Eng. Phys."},{"key":"5_CR34","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1016\/j.neuroimage.2019.05.074","volume":"199","author":"C Vidaurre","year":"2019","unstructured":"Vidaurre, C., Murguialday, A.R., Haufe, S., G\u00f3mez, M., M\u00fcller, K.R., Nikulin, V.V.: Enhancing sensorimotor BCI performance with assistive afferent activity: an online evaluation. NeuroImage 199, 375\u2013386 (2019). \nhttps:\/\/doi.org\/10.1016\/j.neuroimage.2019.05.074","journal-title":"NeuroImage"},{"issue":"9","key":"5_CR35","doi-asserted-by":"publisher","first-page":"1824","DOI":"10.1016\/j.clinph.2013.03.009","volume":"124","author":"C Vidaurre","year":"2013","unstructured":"Vidaurre, C., et al.: Neuromuscular electrical stimulation induced brain patterns to decode motor imagery. Clin. Neurophysiol. 124(9), 1824\u20131834 (2013). \nhttps:\/\/doi.org\/10.1016\/j.clinph.2013.03.009","journal-title":"Clin. Neurophysiol."},{"key":"5_CR36","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"413","DOI":"10.1007\/978-3-642-13769-3_50","volume-title":"Hybrid Artificial Intelligence Systems","author":"C Vidaurre","year":"2010","unstructured":"Vidaurre, C., Sannelli, C., M\u00fcller, K.-R., Blankertz, B.: Machine-learning based co-adaptive calibration: a perspective to fight BCI illiteracy. In: Gra\u00f1a Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS (LNAI), vol. 6076, pp. 413\u2013420. Springer, Heidelberg (2010). \nhttps:\/\/doi.org\/10.1007\/978-3-642-13769-3_50"},{"issue":"9","key":"5_CR37","doi-asserted-by":"publisher","first-page":"1313","DOI":"10.1016\/j.neunet.2009.07.020","volume":"22","author":"C Vidaurre","year":"2009","unstructured":"Vidaurre, C., Kr\u00e4mer, N., Blankertz, B., Schl\u00f6gl, A.: Time domain parameters as a feature for EEG-based brain-computer interfaces. Neural Netw. 22(9), 1313\u20131319 (2009). \nhttps:\/\/doi.org\/10.1016\/j.neunet.2009.07.020","journal-title":"Neural Netw."},{"issue":"1","key":"5_CR38","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1007\/s11517-006-0122-5","volume":"45","author":"C Vidaurre","year":"2007","unstructured":"Vidaurre, C., Scherer, R., Cabeza, R., Schl\u00f6gl, A., Pfurtscheller, G.: Study of discriminant analysis applied to motor imagery bipolar data. Med. Biol. Eng. Comput. 45(1), 61 (2007). \nhttps:\/\/doi.org\/10.1007\/s11517-006-0122-5","journal-title":"Med. Biol. Eng. Comput."},{"issue":"5","key":"5_CR39","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1109\/MEMB.2008.923958","volume":"27","author":"Y Wang","year":"2008","unstructured":"Wang, Y., Gao, X., Hong, B., Jia, C., Gao, S.: Brain-computer interfaces based on visual evoked potentials. IEEE Eng. Med. Biol. Mag. 27(5), 64\u201371 (2008). \nhttps:\/\/doi.org\/10.1109\/MEMB.2008.923958","journal-title":"IEEE Eng. Med. Biol. Mag."},{"issue":"2","key":"5_CR40","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1109\/TNSRE.2006.875576","volume":"14","author":"Y Wang","year":"2006","unstructured":"Wang, Y., Wang, R., Gao, X., Hong, B., Gao, S.: A practical VEP-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 234\u2013240 (2006). \nhttps:\/\/doi.org\/10.1109\/TNSRE.2006.875576","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"6","key":"5_CR41","doi-asserted-by":"publisher","first-page":"767","DOI":"10.1016\/S1388-2457(02)00057-3","volume":"113","author":"JR Wolpaw","year":"2002","unstructured":"Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767\u2013791 (2002). \nhttps:\/\/doi.org\/10.1016\/S1388-2457(02)00057-3","journal-title":"Clin. Neurophysiol."},{"issue":"6","key":"5_CR42","doi-asserted-by":"publisher","first-page":"1447","DOI":"10.1109\/TBME.2014.2320948","volume":"62","author":"E Yin","year":"2014","unstructured":"Yin, E., Zhou, Z., Jiang, J., Yu, Y., Hu, D.: A dynamically optimized SSVEP brain-computer interface (BCI) speller. IEEE Trans. Biomed. Eng. 62(6), 1447\u20131456 (2014). \nhttps:\/\/doi.org\/10.1109\/TBME.2014.2320948","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"5_CR43","doi-asserted-by":"publisher","unstructured":"Zhang, R., Xu, P., Guo, L., Zhang, Y., Li, P., Yao, D.: Z-score linear discriminant analysis for EEG based brain-computer interfaces. PLoS One 8(9) (2013). \nhttps:\/\/doi.org\/10.1371\/journal.pone.0074433","DOI":"10.1371\/journal.pone.0074433"},{"issue":"6","key":"5_CR44","doi-asserted-by":"publisher","first-page":"887","DOI":"10.1109\/TNSRE.2013.2279680","volume":"21","author":"Y Zhang","year":"2013","unstructured":"Zhang, Y., Zhou, G., Jin, J., Wang, M., Wang, X., Cichocki, A.: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 887\u2013896 (2013). \nhttps:\/\/doi.org\/10.1109\/TNSRE.2013.2279680","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"04","key":"5_CR45","doi-asserted-by":"publisher","first-page":"1450013","DOI":"10.1142\/S0129065714500130","volume":"24","author":"Y Zhang","year":"2014","unstructured":"Zhang, Y., Zhou, G., Jin, J., Wang, X., Cichocki, A.: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int. J. Neural Syst. 24(04), 1450013 (2014). \nhttps:\/\/doi.org\/10.1142\/S0129065714500130","journal-title":"Int. J. Neural Syst."}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-61705-9_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T16:05:30Z","timestamp":1604505930000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-61705-9_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030617042","9783030617059"],"references-count":45,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-61705-9_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"4 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gij\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2020.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"106","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"65","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}