{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T19:07:35Z","timestamp":1742929655888,"version":"3.40.3"},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030617042"},{"type":"electronic","value":"9783030617059"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-61705-9_34","type":"book-chapter","created":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T16:03:54Z","timestamp":1604505834000},"page":"410-423","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Averaging-Based Ensemble Methods for the Partial Label Ranking Problem"],"prefix":"10.1007","author":[{"given":"Juan C.","family":"Alfaro","sequence":"first","affiliation":[]},{"given":"Juan A.","family":"Aledo","sequence":"additional","affiliation":[]},{"given":"Jos\u00e9 A.","family":"G\u00e1mez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,4]]},"reference":[{"key":"34_CR1","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1016\/j.inffus.2016.09.002","volume":"35","author":"JA Aledo","year":"2017","unstructured":"Aledo, J.A., G\u00e1mez, J.A., Molina, D.: Tackling the supervised label ranking problem by bagging weak learners. Inf. Fusion 35, 38\u201350 (2017)","journal-title":"Inf. Fusion"},{"key":"34_CR2","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1016\/j.dss.2017.03.006","volume":"97","author":"JA Aledo","year":"2017","unstructured":"Aledo, J.A., G\u00e1mez, J.A., Rosete, A.: Utopia in the solution of the Bucket Order Problem. Decis. Support Syst. 97, 69\u201380 (2017)","journal-title":"Decis. Support Syst."},{"key":"34_CR3","unstructured":"Alfaro, J.C., Aledo, J.A., Gamez, J.A.: Scikit-lr (2019) https:\/\/github.com\/alfaro96\/scikit-lr"},{"key":"34_CR4","doi-asserted-by":"crossref","unstructured":"Alfaro, J.C., Aledo, J.A., Gamez, J.A.: Learning decision trees for the Partial Label Ranking problem. Int. J. Intell. Syst. (2020, in press)","DOI":"10.1007\/978-3-030-61705-9_34"},{"key":"34_CR5","doi-asserted-by":"crossref","unstructured":"Arias, J., C\u00f3zar, J.: ExReport: fast, reliable and elegant reproducible research (2015) http:\/\/exreport.jarias.es\/","DOI":"10.32614\/CRAN.package.exreport"},{"key":"34_CR6","unstructured":"Borda, J.: Memoire sur les elections au scrutin. Histoire de l\u2019Academie Royal des Sci. (1770)"},{"key":"34_CR7","first-page":"123","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L.: Bagging predictors. Mach. Learn. 24, 123\u2013140 (1996)","journal-title":"Mach. Learn."},{"key":"34_CR8","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45, 5\u201332 (2001)","journal-title":"Mach. Learn."},{"issue":"1","key":"34_CR9","first-page":"14","volume":"1","author":"L Breiman","year":"1984","unstructured":"Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 14\u201323 (1984)","journal-title":"Wiley Interdisc. Rev. Data Min. Knowl. Discov."},{"key":"34_CR10","doi-asserted-by":"crossref","unstructured":"Cheng, W., H\u00fchn, J., H\u00fcllermeier, E.: Decision tree and instance-based learning for label ranking. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 161\u2013168 (2009)","DOI":"10.1145\/1553374.1553395"},{"key":"34_CR11","doi-asserted-by":"publisher","first-page":"369","DOI":"10.1016\/j.ejor.2005.03.048","volume":"172","author":"WD Cook","year":"2006","unstructured":"Cook, W.D.: Distance-based and ad hoc consensus models in ordinal preference ranking. Eur. J. Oper. Res. 172, 369\u2013385 (2006)","journal-title":"Eur. J. Oper. Res."},{"key":"34_CR12","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","volume":"13","author":"T Cover","year":"1967","unstructured":"Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21\u201327 (1967)","journal-title":"IEEE Trans. Inf. Theory"},{"key":"34_CR13","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar, J., Statistical Comparisons of Classifiers over Multiple Data Sets: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1\u201330 (2006)","journal-title":"J. Mach. Learn. Res."},{"key":"34_CR14","unstructured":"Dheeru, D., Karra, E.: UCI machine learning repository (1987) http:\/\/archive.ics.uci.edu\/ml"},{"key":"34_CR15","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1002\/mcda.313","volume":"11","author":"EJ Emond","year":"2002","unstructured":"Emond, E.J., Mason, D.W.: A new rank correlation coefficient with application to the consensus ranking problem. J. Multi-Criteria Decis. Anal. 11, 17\u201328 (2002)","journal-title":"J. Multi-Criteria Decis. Anal."},{"key":"34_CR16","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1214\/aoms\/1177731944","volume":"11","author":"M Friedman","year":"1940","unstructured":"Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11, 86\u201392 (1940)","journal-title":"Ann. Math. Stat."},{"key":"34_CR17","doi-asserted-by":"publisher","unstructured":"Fr\u00fcnkranz, J., H\u00fcllermeier, E.: Preference Learning. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. (2010) https:\/\/doi.org\/10.1007\/978-0-387-30164-8","DOI":"10.1007\/978-0-387-30164-8"},{"key":"34_CR18","first-page":"2677","volume":"9","author":"S Garc\u00eda","year":"2008","unstructured":"Garc\u00eda, S., Herrera, F.: An extension on \u201cstatistical comparisons of classifiers over multiple data sets\u201d for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677\u20132694 (2008)","journal-title":"J. Mach. Learn. Res."},{"key":"34_CR19","doi-asserted-by":"crossref","unstructured":"Gionis, A., Mannila, H., Puolam\u00e4ki, K., Ukkonen, A.: Algorithms for discovering bucket orders from data. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 561\u2013566 (2006)","DOI":"10.1145\/1150402.1150468"},{"key":"34_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v071.i12","volume":"71","author":"E Irurozki","year":"2016","unstructured":"Irurozki, E., Calvo, B., Lozano, J.A.: PerMallows: an R package for mallows and generalized mallows models. J. Stat. Softw. 71, 1\u201330 (2016)","journal-title":"J. Stat. Softw."},{"key":"34_CR21","unstructured":"Kemeny, J., Snell, J.: Mathematical Models in the Social Sciences. The MIT Press (1972)"},{"key":"34_CR22","unstructured":"Kendall, M.G.: Rank Correlation Methods. C. Griffin (1948)"},{"key":"34_CR23","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1002\/wics.111","volume":"2","author":"S Lin","year":"2010","unstructured":"Lin, S.: Rank aggregation methods. Wiley Interdisc. Rev. 2, 555\u2013570 (2010)","journal-title":"Wiley Interdisc. Rev."},{"key":"34_CR24","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1093\/biomet\/44.1-2.114","volume":"44","author":"CL Mallows","year":"1957","unstructured":"Mallows, C.L.: Non-null ranking models. Biometrika 44, 114\u2013130 (1957)","journal-title":"Biometrika"},{"key":"34_CR25","unstructured":"Mitchell, T.M.: Machine learning. McGraw-Hill (1997)"},{"key":"34_CR26","first-page":"561","volume":"46","author":"JP Shaffer","year":"1995","unstructured":"Shaffer, J.P.: Multiple hypothesis testing. Ann. Rev. 46, 561\u2013584 (1995)","journal-title":"Ann. Rev."},{"key":"34_CR27","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1002\/j.1538-7305.1948.tb01338.x","volume":"27","author":"CE Shannon","year":"1948","unstructured":"Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379\u2013423 (1948)","journal-title":"Bell Syst. Tech. J."},{"key":"34_CR28","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.eswa.2018.06.036","volume":"112","author":"Y Zhou","year":"2018","unstructured":"Zhou, Y., Qiu, G.: Random forest for label ranking. Expert Syst. Appl. 112, 99\u2013109 (2018)","journal-title":"Expert Syst. Appl."}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-61705-9_34","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T22:32:42Z","timestamp":1723847562000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-61705-9_34"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030617042","9783030617059"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-61705-9_34","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"4 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gij\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2020.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"106","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"65","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}