{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T00:37:00Z","timestamp":1726101420125},"publisher-location":"Cham","reference-count":38,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030613792"},{"type":"electronic","value":"9783030613808"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-61380-8_30","type":"book-chapter","created":{"date-parts":[[2020,10,15]],"date-time":"2020-10-15T19:04:06Z","timestamp":1602788646000},"page":"442-455","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Ensemble of Binary Classifiers Combined Using Recurrent Correlation Associative Memories"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9600-8469","authenticated-orcid":false,"given":"Rodolfo Anibal","family":"Lobo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4026-5110","authenticated-orcid":false,"given":"Marcos Eduardo","family":"Valle","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,10,13]]},"reference":[{"unstructured":"Austin, J.: ADAM: a distributed associative memory for scene analysis. In: Proceedings of the IEEE First International Conference on Neural Networks, vol. IV, p. 285. San Diego (1987)","key":"30_CR1"},{"issue":"2","key":"30_CR2","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1023\/A:1018054314350","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123\u2013140 (1996). https:\/\/doi.org\/10.1023\/A:1018054314350","journal-title":"Mach. Learn."},{"issue":"1","key":"30_CR3","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001). https:\/\/doi.org\/10.1023\/A:1010933404324","journal-title":"Mach. Learn."},{"doi-asserted-by":"publisher","unstructured":"Burda, M.: Paircompviz: An R Package for Visualization of Multiple Pairwise Comparison Test Results (2013). https:\/\/doi.org\/10.18129\/B9.bioc.paircompviz","key":"30_CR4","DOI":"10.18129\/B9.bioc.paircompviz"},{"key":"30_CR5","doi-asserted-by":"publisher","first-page":"275","DOI":"10.1109\/72.80338","volume":"2","author":"T Chiueh","year":"1991","unstructured":"Chiueh, T., Goodman, R.: Recurrent correlation associative memories. IEEE Trans. Neural Netw. 2, 275\u2013284 (1991)","journal-title":"IEEE Trans. Neural Netw."},{"key":"30_CR6","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1\u201330 (2006)","journal-title":"J. Mach. Learn. Res."},{"doi-asserted-by":"publisher","unstructured":"Ferreira, A., Figueiredo, M.: Boosting algorithms: a review of methods, theory, and applications. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning: Methods and Applications, pp. 35\u201385. Springer (2012). https:\/\/doi.org\/10.1007\/978-1-4419-9326-7_2","key":"30_CR7","DOI":"10.1007\/978-1-4419-9326-7_2"},{"key":"30_CR8","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"871","DOI":"10.1007\/978-3-540-30498-2_87","volume-title":"Advances in Artificial Intelligence \u2013 IBERAMIA 2004","author":"C Garc\u00eda","year":"2004","unstructured":"Garc\u00eda, C., Moreno, J.A.: The hopfield associative memory network: improving performance with the kernel \u201cTrick\u201d. In: Lema\u00eetre, C., Reyes, C.A., Gonz\u00e1lez, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 871\u2013880. Springer, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-540-30498-2_87"},{"key":"30_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"755","DOI":"10.1007\/978-3-540-30479-1_78","volume-title":"Cellular Automata","author":"C Garc\u00eda","year":"2004","unstructured":"Garc\u00eda, C., Moreno, J.A.: The kernel hopfield memory network. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 755\u2013764. Springer, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-540-30479-1_78"},{"unstructured":"G\u00e9ron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O\u2019Reilly Media (2019)","key":"30_CR10"},{"issue":"2","key":"30_CR11","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1016\/S0167-8655(97)00164-5","volume":"19","author":"ER Hancock","year":"1998","unstructured":"Hancock, E.R., Pelillo, M.: A Bayesian interpretation for the exponential correlation associative memory. Pattern Recogn. Lett. 19(2), 149\u2013159 (1998)","journal-title":"Pattern Recogn. Lett."},{"issue":"10","key":"30_CR12","doi-asserted-by":"publisher","first-page":"993","DOI":"10.1109\/34.58871","volume":"12","author":"LK Hansen","year":"1990","unstructured":"Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993\u20131001 (1990)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"publisher","unstructured":"Du, K.-L., Swamy, M.N.S.: Associative Memory Networks. Neural Networks and Statistical Learning. LNCS, pp. 201\u2013229. Springer, London (2019). https:\/\/doi.org\/10.1007\/978-1-4471-7452-3_8","key":"30_CR13","DOI":"10.1007\/978-1-4471-7452-3_8"},{"issue":"8","key":"30_CR14","doi-asserted-by":"publisher","first-page":"832","DOI":"10.1109\/34.709601","volume":"20","author":"TK Ho","year":"1998","unstructured":"Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832\u2013844 (1998)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"30_CR15","doi-asserted-by":"publisher","first-page":"2554","DOI":"10.1073\/pnas.79.8.2554","volume":"79","author":"JJ Hopfield","year":"1982","unstructured":"Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554\u20132558 (1982)","journal-title":"Proc. Nat. Acad. Sci."},{"key":"30_CR16","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1007\/BF00339943","volume":"52","author":"J Hopfield","year":"1985","unstructured":"Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems. Biol. Cybern. 52, 141\u2013152 (1985)","journal-title":"Biol. Cybern."},{"key":"30_CR17","doi-asserted-by":"publisher","first-page":"1491","DOI":"10.1109\/72.548176","volume":"7","author":"S Jankowski","year":"1996","unstructured":"Jankowski, S., Lozowski, A., Zurada, J.: Complex-valued multi-state neural associative memory. IEEE Trans. Neural Netw. 7, 1491\u20131496 (1996)","journal-title":"IEEE Trans. Neural Netw."},{"key":"30_CR18","doi-asserted-by":"publisher","first-page":"380","DOI":"10.1103\/PhysRevA.35.380","volume":"35","author":"I Kanter","year":"1987","unstructured":"Kanter, I., Sompolinsky, H.: Associative recall of memory without errors. Phys. Rev. 35, 380\u2013392 (1987)","journal-title":"Phys. Rev."},{"unstructured":"Kittler, J., Roli, F.: 2000 Proceedings of the Multiple Classifier Systems: First International Workshop, MCS 2000, Cagliari, Italy, June 21\u201323. Springer (2003)","key":"30_CR19"},{"key":"30_CR20","doi-asserted-by":"publisher","first-page":"304","DOI":"10.1016\/j.neucom.2017.06.013","volume":"267","author":"M Kobayashi","year":"2017","unstructured":"Kobayashi, M.: Quaternionic Hopfield neural networks with twin-multistate activation function. Neurocomputing 267, 304\u2013310 (2017). https:\/\/doi.org\/10.1016\/j.neucom.2017.06.013","journal-title":"Neurocomputing"},{"doi-asserted-by":"crossref","unstructured":"Kohonen, T.: Self-Organization and Associative Memory, 2rd edn. Springer, New York (1987)","key":"30_CR21","DOI":"10.1007\/978-3-662-00784-6"},{"issue":"6","key":"30_CR22","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1016\/j.knosys.2009.05.001","volume":"22","author":"Y Kultur","year":"2009","unstructured":"Kultur, Y., Turhan, B., Bener, A.: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs. Knowl.-Based Syst. 22(6), 395\u2013402 (2009)","journal-title":"Knowl.-Based Syst."},{"doi-asserted-by":"crossref","unstructured":"Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms, 2 edn. Wiley (2014)","key":"30_CR23","DOI":"10.1002\/9781118914564"},{"key":"30_CR24","first-page":"33","volume":"1","author":"RJ McEliece","year":"1987","unstructured":"McEliece, R.J., Posner, E.C., Rodemich, E.R., Venkatesh, S.: The capacity of the Hopfield associative memory. IEEE Trans. Inf. Theory 1, 33\u201345 (1987)","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"1","key":"30_CR25","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1007\/s10015-015-0247-4","volume":"21","author":"T Minemoto","year":"2015","unstructured":"Minemoto, T., Isokawa, T., Nishimura, H., Matsui, N.: Quaternionic multistate Hopfield neural network with extended projection rule. Artif. Life Robot. 21(1), 106\u2013111 (2015). https:\/\/doi.org\/10.1007\/s10015-015-0247-4","journal-title":"Artif. Life Robot."},{"issue":"4","key":"30_CR26","doi-asserted-by":"publisher","first-page":"891","DOI":"10.1109\/TNN.2003.813844","volume":"14","author":"M M\u00fcezzino\u01e7lu","year":"2003","unstructured":"M\u00fcezzino\u01e7lu, M., G\u00fczeli\u015f, C., Zurada, J.: A new design method for the complex-valued multistate Hopfield associative memory. IEEE Trans. Neural Netw. 14(4), 891\u2013899 (2003)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"2","key":"30_CR27","doi-asserted-by":"publisher","first-page":"370","DOI":"10.1109\/TNN.2004.841775","volume":"16","author":"M M\u00fcezzino\u01e7lu","year":"2005","unstructured":"M\u00fcezzino\u01e7lu, M., G\u00fczelis, C., Zurada, J.: An energy function-based design method for discrete Hopfield associative memory with attractive fixed points. IEEE Trans. Neural Netw. 16(2), 370\u2013378 (2005)","journal-title":"IEEE Trans. Neural Netw."},{"key":"30_CR28","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825\u20132830 (2011)","journal-title":"J. Mach. Learn. Res."},{"issue":"2","key":"30_CR29","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1109\/TNN.2007.909528","volume":"19","author":"R Perfetti","year":"2008","unstructured":"Perfetti, R., Ricci, E.: Recurrent correlation associative memories: a feature space perspective. IEEE Trans. Neural Netw. 19(2), 333\u2013345 (2008)","journal-title":"IEEE Trans. Neural Netw."},{"doi-asserted-by":"publisher","unstructured":"Polikar, R.: Ensemble learning. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning: Methods and Applications, pp. 1\u201334. Springer (2012). https:\/\/doi.org\/10.1007\/978-1-4419-9326-7_1","key":"30_CR30","DOI":"10.1007\/978-1-4419-9326-7_1"},{"doi-asserted-by":"crossref","unstructured":"Ponti Jr, M.P.: Combining classifiers: from the creation of ensembles to the decision fusion. In: 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials, pp. 1\u201310. IEEE (2011)","key":"30_CR31","DOI":"10.1109\/SIBGRAPI-T.2011.9"},{"issue":"1","key":"30_CR32","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11063-007-9055-8","volume":"27","author":"G Serpen","year":"2008","unstructured":"Serpen, G.: Hopfield network as static optimizer: learning the weights and eliminating the guesswork. Neural Process. Lett. 27(1), 1\u201315 (2008). https:\/\/doi.org\/10.1007\/s11063-007-9055-8","journal-title":"Neural Process. Lett."},{"issue":"6","key":"30_CR33","doi-asserted-by":"publisher","first-page":"1301","DOI":"10.1109\/72.728380","volume":"9","author":"K Smith","year":"1998","unstructured":"Smith, K., Palaniswami, M., Krishnamoorthy, M.: Neural techniques for combinatorial optimization with applications. IEEE Trans. Neural Netw. 9(6), 1301\u20131318 (1998)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"7","key":"30_CR34","doi-asserted-by":"publisher","first-page":"2119","DOI":"10.1109\/78.847795","volume":"48","author":"Y Sun","year":"2000","unstructured":"Sun, Y.: Hopfield neural network based algorithms for image restoration and reconstruction II. Perform. Anal. IEEE Trans. Sign. Process. 48(7), 2119\u20132131 (2000). https:\/\/doi.org\/10.1109\/78.847795","journal-title":"Perform. Anal. IEEE Trans. Sign. Process."},{"unstructured":"Van Erp, M., Vuurpijl, L., Schomaker, L.: An overview and comparison of voting methods for pattern recognition. In: Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 195\u2013200. IEEE (2002)","key":"30_CR35"},{"issue":"2","key":"30_CR36","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1145\/2641190.2641198","volume":"15","author":"J Vanschoren","year":"2013","unstructured":"Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49\u201360 (2013). https:\/\/doi.org\/10.1145\/2641190.2641198","journal-title":"SIGKDD Explor."},{"key":"30_CR37","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1016\/j.neucom.2014.06.071","volume":"147","author":"T Weise","year":"2015","unstructured":"Weise, T., Chiong, R.: An alternative way of presenting statistical test results when evaluating the performance of stochastic approaches. Neurocomputing 147, 235\u2013238 (2015). https:\/\/doi.org\/10.1016\/j.neucom.2014.06.071","journal-title":"Neurocomputing"},{"doi-asserted-by":"publisher","unstructured":"Zhang, C., Ma, Y. (eds.): Ensemble Machine Learning: Methods and Applications. Springer (2012). https:\/\/doi.org\/10.1007\/978-1-4419-9326-7","key":"30_CR38","DOI":"10.1007\/978-1-4419-9326-7"}],"container-title":["Lecture Notes in Computer Science","Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-61380-8_30","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,23]],"date-time":"2022-11-23T13:40:36Z","timestamp":1669210836000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-61380-8_30"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030613792","9783030613808"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-61380-8_30","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"13 October 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BRACIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Brazilian Conference on Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Rio Grande","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Brazil","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bracis2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www2.sbc.org.br\/bracis2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"JEMS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"228","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"91","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"40% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to the Corona pandemic BRACIS 2020 was held as a virtual event.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}