{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T00:36:55Z","timestamp":1726101415333},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030613792"},{"type":"electronic","value":"9783030613808"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-61380-8_24","type":"book-chapter","created":{"date-parts":[[2020,10,15]],"date-time":"2020-10-15T15:04:06Z","timestamp":1602774246000},"page":"352-366","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Distance-Weighted Selection of Unlabelled Instances for Self-training and Co-training Semi-supervised Methods"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4756-8571","authenticated-orcid":false,"given":"Cephas A. S.","family":"Barreto","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1824-9600","authenticated-orcid":false,"given":"Arthur C.","family":"Gorg\u00f4nio","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3684-3814","authenticated-orcid":false,"given":"Anne M. P.","family":"Canuto","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1517-2211","authenticated-orcid":false,"given":"Jo\u00e3o C.","family":"Xavier-J\u00fanior","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,10,13]]},"reference":[{"key":"24_CR1","doi-asserted-by":"publisher","DOI":"10.2200\/S00196ED1V01Y200906AIM006","volume-title":"Introduction to Semi-Supervised Learning","author":"X Zhu","year":"2009","unstructured":"Zhu, X., Goldberg, A.B., Brachman, R., Dietterich, T.: Introduction to Semi-Supervised Learning. Morgan and Claypool Publishers, San Rafel (2009)"},{"key":"24_CR2","doi-asserted-by":"crossref","unstructured":"Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: AISTATS, vol. 2005, pp. 57\u201364 (2005)","DOI":"10.7551\/mitpress\/9780262033589.001.0001"},{"key":"24_CR3","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"454","DOI":"10.1007\/978-3-540-74958-5_42","volume-title":"Machine Learning: ECML 2007","author":"W Wang","year":"2007","unstructured":"Wang, W., Zhou, Z.-H.: Analyzing co-training style algorithms. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladeni\u010d, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 454\u2013465. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-74958-5_42"},{"issue":"8","key":"24_CR4","doi-asserted-by":"publisher","first-page":"1979","DOI":"10.1109\/TPAMI.2018.2858821","volume":"41","author":"T Miyato","year":"2018","unstructured":"Miyato, T., Maeda, S., Koyama, M.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979\u20131993 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"11","key":"24_CR5","doi-asserted-by":"publisher","first-page":"1529","DOI":"10.1109\/TKDE.2005.186","volume":"17","author":"Z-H Zhou","year":"2005","unstructured":"Zhou, Z.-H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529\u20131541 (2005)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"24_CR6","doi-asserted-by":"crossref","unstructured":"Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, pp. 92\u2013100. ACM, New York (1998)","DOI":"10.1145\/279943.279962"},{"key":"24_CR7","doi-asserted-by":"crossref","unstructured":"Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, pp. 189\u2013196. Association for Computational Linguistics (1995)","DOI":"10.3115\/981658.981684"},{"issue":"9","key":"24_CR8","doi-asserted-by":"publisher","first-page":"2170","DOI":"10.1016\/j.ijleo.2013.10.043","volume":"125","author":"J Jiang","year":"2014","unstructured":"Jiang, J., Gan, H., Jiang, L., Gao, C., Sang, N.: Semi-supervised discriminant analysis and sparse representation-based self-training for face recognition. Optik 125(9), 2170\u20132174 (2014)","journal-title":"Optik"},{"key":"24_CR9","doi-asserted-by":"crossref","unstructured":"Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.L.: Deep co-training for semi-supervised image recognition. CoRR, abs\/1803.05984 (2018)","DOI":"10.1007\/978-3-030-01267-0_9"},{"key":"24_CR10","doi-asserted-by":"crossref","unstructured":"Xia, Y., et al.: 3D semi-supervised learning with uncertainty-aware multi-view co-training. In: The IEEE Winter Conference on Applications of Computer Vision (WACV), March 2020","DOI":"10.1109\/WACV45572.2020.9093608"},{"key":"24_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ab.2016.02.020","volume":"507","author":"J Zhe","year":"2016","unstructured":"Zhe, J., Hong, G.: Predicting pupylation sites in prokaryotic proteins using semi-supervised self-training support vector machine algorithm. Anal. Biochem. 507, 1\u20136 (2016)","journal-title":"Anal. Biochem."},{"key":"24_CR12","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1016\/j.ins.2015.04.003","volume":"317","author":"MS Hajmohammadi","year":"2015","unstructured":"Hajmohammadi, M.S., Ibrahim, R., Selamat, A., Fujita, H.: Combination of active learning and self-training for cross-lingual sentiment classification with density analysis of unlabelled samples. Inf. Sci. 317, 67\u201377 (2015)","journal-title":"Inf. Sci."},{"key":"24_CR13","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.ins.2018.10.006","volume":"477","author":"D Kim","year":"2019","unstructured":"Kim, D., Seo, D., Cho, S., Kang, P.: Multi-co-training for document classification using various document representations: TF-IDF, LDA, and DOC2VEC. Inf. Sci. 477, 15\u201329 (2019)","journal-title":"Inf. Sci."},{"issue":"1","key":"24_CR14","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1007\/s13042-015-0328-7","volume":"8","author":"J Tanha","year":"2017","unstructured":"Tanha, J., van Someren, M., Afsarmanesh, H.: Semi-supervised self-training for decision tree classifiers. Int. J. Mach. Learn. Cybernet. 8(1), 355\u2013370 (2017)","journal-title":"Int. J. Mach. Learn. Cybernet."},{"key":"24_CR15","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1016\/j.neucom.2017.05.072","volume":"275","author":"W Di","year":"2018","unstructured":"Di, W., et al.: Self-training semi-supervised classification based on density peaks of data. Neurocomputing 275, 180\u2013191 (2018)","journal-title":"Neurocomputing"},{"key":"24_CR16","doi-asserted-by":"crossref","unstructured":"Suzuki, T., Kato, J., Wang, Y., Mase, K.: Domain adaptive action recognition with integrated self-training and feature selection. In 2013 2nd IAPR Asian Conference on Pattern Recognition, pp. 105\u2013109. IEEE, Naha, November 2013","DOI":"10.1109\/ACPR.2013.28"},{"key":"24_CR17","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1016\/j.neucom.2013.05.055","volume":"132","author":"I Triguero","year":"2014","unstructured":"Triguero, I., S\u00e1ez, J.A., Luengo, J., Garc\u00eda, S., Herrera, F.: On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification. Neurocomputing 132, 30\u201341 (2014)","journal-title":"Neurocomputing"},{"issue":"3","key":"24_CR18","first-page":"937","volume":"23","author":"S Bettoumi","year":"2019","unstructured":"Bettoumi, S., Jlassi, C., Arous, N.: Collaborative multi-view k-means clustering. Soft. Comput. 23(3), 937\u2013945 (2019)","journal-title":"Soft. Comput."},{"key":"24_CR19","doi-asserted-by":"crossref","unstructured":"Vale, K.M.O., et al.: A data stratification process for instances selection in semi-supervised learning. In: International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138. IEEE (2019)","DOI":"10.1109\/IJCNN.2019.8851946"},{"issue":"57","key":"24_CR20","first-page":"1","volume":"21","author":"F Ma","year":"2020","unstructured":"Ma, F., Meng, D., Dong, X., Yang, Y.: Self-paced multi-view co-training. J. Mach. Learn. Res. 21(57), 1\u201338 (2020)","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"24_CR21","doi-asserted-by":"publisher","first-page":"26","DOI":"10.3390\/a13010026","volume":"13","author":"S Karlos","year":"2020","unstructured":"Karlos, S., Kostopoulos, G., Kotsiantis, S.: A soft-voting ensemble based co-training scheme using static selection for binary classification problems. Algorithms 13(1), 26 (2020)","journal-title":"Algorithms"},{"issue":"1","key":"24_CR22","first-page":"37","volume":"2","author":"DM Powers","year":"2011","unstructured":"Powers, D.M.: Evaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlation. J. ML Technol. 2(1), 37\u201363 (2011)","journal-title":"J. ML Technol."},{"issue":"Jan","key":"24_CR23","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1\u201330 (2006)","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"24_CR24","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10\u201318 (2009)","journal-title":"ACM SIGKDD Explor. Newslett."}],"container-title":["Lecture Notes in Computer Science","Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-61380-8_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,23]],"date-time":"2022-11-23T08:40:00Z","timestamp":1669192800000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-61380-8_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030613792","9783030613808"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-61380-8_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"13 October 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BRACIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Brazilian Conference on Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Rio Grande","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Brazil","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bracis2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www2.sbc.org.br\/bracis2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"JEMS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"228","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"91","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"40% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to the Corona pandemic BRACIS 2020 was held as a virtual event.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}