{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T23:54:48Z","timestamp":1726098888378},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030605476"},{"type":"electronic","value":"9783030605483"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-60548-3_3","type":"book-chapter","created":{"date-parts":[[2020,9,25]],"date-time":"2020-09-25T03:04:29Z","timestamp":1601003069000},"page":"23-30","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Augmented Radiology: Patient-Wise Feature Transfer Model for Glioma Grading"],"prefix":"10.1007","author":[{"given":"Zisheng","family":"Li","sequence":"first","affiliation":[]},{"given":"Masahiro","family":"Ogino","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,26]]},"reference":[{"issue":"1","key":"3_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-017-18310-0","volume":"8","author":"N Beig","year":"2018","unstructured":"Beig, N., et al.: Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma. Sci. Rep. 8(1), 1\u201311 (2018)","journal-title":"Sci. Rep."},{"issue":"6","key":"3_CR2","doi-asserted-by":"publisher","first-page":"765","DOI":"10.2217\/fca.11.56","volume":"7","author":"IM Barbash","year":"2011","unstructured":"Barbash, I.M., Waksman, R.: Current status, challenges and future directions of drug-eluting balloons. Future Cardiol. 7(6), 765\u2013774 (2011)","journal-title":"Future Cardiol."},{"key":"3_CR3","doi-asserted-by":"publisher","first-page":"e5982","DOI":"10.7717\/peerj.5982","volume":"6","author":"HH Cho","year":"2018","unstructured":"Cho, H.H., Lee, S.H., Kim, J., Park, H.: Classification of the glioma grading using radiomics analysis. PeerJ 6, e5982 (2018). https:\/\/doi.org\/10.7717\/peerj.5982","journal-title":"PeerJ"},{"key":"3_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/978-3-030-32248-9_18","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"P Huang","year":"2019","unstructured":"Huang, P., et al.: CoCa-GAN: common-feature-learning-based context-aware generative adversarial network for glioma grading. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 155\u2013163. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32248-9_18"},{"issue":"8","key":"3_CR5","doi-asserted-by":"publisher","first-page":"382","DOI":"10.3390\/genes9080382","volume":"9","author":"S Liang","year":"2018","unstructured":"Liang, S., et al.: Multimodal 3D DenseNet for IDH genotype prediction in gliomas. Genes 9(8), 382 (2018)","journal-title":"Genes"},{"doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700\u20134708 (2017)","key":"3_CR6","DOI":"10.1109\/CVPR.2017.243"},{"key":"3_CR7","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/j.media.2018.03.006","volume":"47","author":"A Hamidinekoo","year":"2018","unstructured":"Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., Zwiggelaar, R.: Deep learning in mammography and breast histology, an overview and future trends. Med. Image Anal. 47, 45\u201367 (2018)","journal-title":"Med. Image Anal."},{"key":"3_CR8","doi-asserted-by":"publisher","DOI":"10.7937\/K9\/TCIA.2017.GJQ7R0EF","author":"S Bakas","year":"2017","unstructured":"Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https:\/\/doi.org\/10.7937\/K9\/TCIA.2017.GJQ7R0EF","journal-title":"Cancer Imaging Arch."},{"key":"3_CR9","doi-asserted-by":"publisher","DOI":"10.7937\/K9\/TCIA.2017.KLXWJJ1Q","author":"S Bakas","year":"2017","unstructured":"Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https:\/\/doi.org\/10.7937\/K9\/TCIA.2017.KLXWJJ1Q","journal-title":"Cancer Imaging Arch."},{"issue":"10","key":"3_CR10","doi-asserted-by":"publisher","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","volume":"34","author":"BH Menze","year":"2015","unstructured":"Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993\u20132024 (2015). https:\/\/doi.org\/10.1109\/TMI.2014.2377694","journal-title":"IEEE Trans. Med. Imaging"},{"key":"3_CR11","doi-asserted-by":"publisher","first-page":"170117","DOI":"10.1038\/sdata.2017.117","volume":"4","author":"S Bakas","year":"2017","unstructured":"Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https:\/\/doi.org\/10.1038\/sdata.2017.117","journal-title":"Nat. Sci. Data"},{"unstructured":"Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)","key":"3_CR12"},{"doi-asserted-by":"crossref","unstructured":"Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107\u20131110 (2009)","key":"3_CR13","DOI":"10.1109\/ISBI.2009.5193250"},{"unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)","key":"3_CR14"},{"doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255 (2009)","key":"3_CR15","DOI":"10.1109\/CVPR.2009.5206848"}],"container-title":["Lecture Notes in Computer Science","Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-60548-3_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T09:38:18Z","timestamp":1710236298000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-60548-3_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030605476","9783030605483"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-60548-3_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"26 September 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DART","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"MICCAI Workshop on Domain Adaptation and Representation Transfer","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lima","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Peru","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dart2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/dart2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}