{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T00:13:02Z","timestamp":1726099982970},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030597276"},{"type":"electronic","value":"9783030597283"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-59728-3_31","type":"book-chapter","created":{"date-parts":[[2020,10,2]],"date-time":"2020-10-02T10:03:00Z","timestamp":1601632980000},"page":"311-321","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Hierarchical Geodesic Modeling on the Diffusion Orientation Distribution Function for Longitudinal DW-MRI Analysis"],"prefix":"10.1007","author":[{"given":"Heejong","family":"Kim","sequence":"first","affiliation":[]},{"given":"Sungmin","family":"Hong","sequence":"additional","affiliation":[]},{"given":"Martin","family":"Styner","sequence":"additional","affiliation":[]},{"given":"Joseph","family":"Piven","sequence":"additional","affiliation":[]},{"given":"Kelly","family":"Botteron","sequence":"additional","affiliation":[]},{"given":"Guido","family":"Gerig","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,29]]},"reference":[{"key":"31_CR1","unstructured":"Allassonni\u00e8re, S., Chevallier, J., Oudard, S.: Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data. In: Advances in Neural Information Processing Systems, pp. 1152\u20131160 (2017)"},{"key":"31_CR2","doi-asserted-by":"crossref","unstructured":"B\u00f4ne, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9271\u20139280 (2018)","DOI":"10.1109\/CVPR.2018.00966"},{"issue":"4","key":"31_CR3","doi-asserted-by":"publisher","first-page":"993","DOI":"10.1016\/j.neuroimage.2011.07.006","volume":"58","author":"Y Chen","year":"2011","unstructured":"Chen, Y., et al.: Longitudinal regression analysis of spatial-temporal growth patterns of geometrical diffusion measures in early postnatal brain development with diffusion tensor imaging. Neuroimage 58(4), 993\u20131005 (2011)","journal-title":"Neuroimage"},{"issue":"5","key":"31_CR4","doi-asserted-by":"publisher","first-page":"1194","DOI":"10.1002\/jmri.22535","volume":"33","author":"J Cohen-Adad","year":"2011","unstructured":"Cohen-Adad, J., Descoteaux, M., Wald, L.L.: Quality assessment of high angular resolution diffusion imaging data using bootstrap on q-ball reconstruction. J. Magnetic Resonance Imag. 33(5), 1194\u20131208 (2011)","journal-title":"J. Magnetic Resonance Imag."},{"issue":"3","key":"31_CR5","doi-asserted-by":"publisher","first-page":"497","DOI":"10.1002\/mrm.21277","volume":"58","author":"M Descoteaux","year":"2007","unstructured":"Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med. 58(3), 497\u2013510 (2007)","journal-title":"Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med."},{"key":"31_CR6","doi-asserted-by":"publisher","first-page":"416","DOI":"10.1016\/j.neuroimage.2013.06.081","volume":"87","author":"J Du","year":"2014","unstructured":"Du, J., Goh, A., Kushnarev, S., Qiu, A.: Geodesic regression on orientation distribution functions with its application to an aging study. NeuroImage 87, 416\u2013426 (2014)","journal-title":"NeuroImage"},{"key":"31_CR7","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1016\/j.neuroscience.2013.12.044","volume":"276","author":"J Dubois","year":"2014","unstructured":"Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., H\u00fcppi, P.S., Hertz-Pannier, L.: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48\u201371 (2014)","journal-title":"Neuroscience"},{"issue":"1","key":"31_CR8","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1007\/s11263-012-0592-x","volume":"103","author":"S Durrleman","year":"2013","unstructured":"Durrleman, S., Pennec, X., Trouv\u00e9, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int. J. Comput. Vis. 103(1), 22\u201359 (2013)","journal-title":"Int. J. Comput. Vis."},{"key":"31_CR9","doi-asserted-by":"crossref","unstructured":"Fitzmaurice, G.M., Laird, N.M., Ware, J.H.: Applied longitudinal analysis, vol.\u00a0998. John Wiley & Sons (2012)","DOI":"10.1002\/9781119513469"},{"key":"31_CR10","doi-asserted-by":"publisher","unstructured":"Fletcher, P.T.: Geodesic regression and its application to shape analysis. In: Innovations for Shape Analysis, pp. 35\u201352. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-34141-0_2","DOI":"10.1007\/978-3-642-34141-0_2"},{"key":"31_CR11","doi-asserted-by":"publisher","first-page":"8","DOI":"10.3389\/fninf.2014.00008","volume":"8","author":"E Garyfallidis","year":"2014","unstructured":"Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014)","journal-title":"Front. Neuroinform."},{"key":"31_CR12","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/j.media.2016.06.014","volume":"33","author":"G Gerig","year":"2016","unstructured":"Gerig, G., Fishbaugh, J., Sadeghi, N.: Longitudinal modeling of appearance and shape and its potential for clinical use. Med. Image Anal. 33, 114\u2013121 (2016)","journal-title":"Med. Image Anal."},{"key":"31_CR13","doi-asserted-by":"crossref","unstructured":"Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: A nonparametric riemannian framework for processing high angular resolution diffusion images (hardi). In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2496\u20132503. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206843"},{"key":"31_CR14","doi-asserted-by":"crossref","unstructured":"Guizard, N., Fonov, V.S., Garc\u00eda-Lorenzo, D., Nakamura, K., Aubert-Broche, B., Collins, D.L.: Spatio-temporal regularization for longitudinal registration to subject-specific 3d template. PLoS ONE 10(8), 10 (2015)","DOI":"10.1371\/journal.pone.0133352"},{"key":"31_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/978-3-030-32251-9_7","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"S Hong","year":"2019","unstructured":"Hong, S., Fishbaugh, J., Wolff, J.J., Styner, M.A., Gerig, G.: Hierarchical multi-geodesic model for longitudinal analysis of temporal trajectories of anatomical shape and covariates. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 57\u201365. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32251-9_7"},{"key":"31_CR16","doi-asserted-by":"crossref","unstructured":"Kim, H., Styner, M., Piven, J., Gerig, G.: A framework to construct a longitudinal dw-mri infant atlas based on mixed effects modeling of dodf coefficients. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2019)","DOI":"10.1007\/978-3-030-52893-5_13"},{"key":"31_CR17","doi-asserted-by":"crossref","unstructured":"Kim, H.J., Adluru, N., Suri, H., Vemuri, B.C., Johnson, S.C., Singh, V.: Riemannian nonlinear mixed effects models: analyzing longitudinal deformations in neuroimaging. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2540\u20132549 (2017)","DOI":"10.1109\/CVPR.2017.612"},{"key":"31_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1007\/978-3-319-66182-7_6","volume-title":"Medical Image Computing and Computer Assisted Intervention - MICCAI 2017","author":"J Kim","year":"2017","unstructured":"Kim, J., Chen, G., Lin, W., Yap, P.-T., Shen, D.: Graph-constrained sparse construction of longitudinal diffusion-weighted infant atlases. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 49\u201356. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66182-7_6"},{"key":"31_CR19","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1016\/j.neuroimage.2018.10.060","volume":"186","author":"M Pietsch","year":"2019","unstructured":"Pietsch, M., et al.: A framework for multi-component analysis of diffusion mri data over the neonatal period. NeuroImage 186, 321\u2013337 (2019)","journal-title":"NeuroImage"},{"key":"31_CR20","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/j.neuroimage.2019.04.004","volume":"196","author":"JE Reynolds","year":"2019","unstructured":"Reynolds, J.E., Grohs, M.N., Dewey, D., Lebel, C.: Global and regional white matter development in early childhood. Neuroimage 196, 49\u201358 (2019)","journal-title":"Neuroimage"},{"key":"31_CR21","unstructured":"Rutherford, M.A.: MRI of the Neonatal Brain. Elsevier Health Sciences (2002)"},{"key":"31_CR22","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1016\/j.neuroimage.2012.11.040","volume":"68","author":"N Sadeghi","year":"2013","unstructured":"Sadeghi, N., Prastawa, M., Fletcher, P.T., Wolff, J., Gilmore, J.H., Gerig, G.: Regional characterization of longitudinal dt-mri to study white matter maturation of the early developing brain. Neuroimage 68, 236\u2013247 (2013)","journal-title":"Neuroimage"},{"issue":"1","key":"31_CR23","first-page":"4840","volume":"18","author":"JB Schiratti","year":"2017","unstructured":"Schiratti, J.B., Allassonniere, S., Colliot, O., Durrleman, S.: A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations. J. Mach. Learn. Res. 18(1), 4840\u20134872 (2017)","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"31_CR24","doi-asserted-by":"publisher","first-page":"2255","DOI":"10.1016\/j.neuroimage.2011.09.062","volume":"59","author":"A Serag","year":"2012","unstructured":"Serag, A., et al.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59(3), 2255\u20132265 (2012)","journal-title":"NeuroImage"},{"issue":"1","key":"31_CR25","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1007\/s11263-015-0849-2","volume":"117","author":"N Singh","year":"2016","unstructured":"Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. Int. J. Comput. Vis. 117(1), 70\u201392 (2016)","journal-title":"Int. J. Comput. Vis."},{"key":"31_CR26","doi-asserted-by":"crossref","unstructured":"Srivastava, A., Jermyn, I., Joshi, S.: Riemannian analysis of probability density functions with applications in vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20138. IEEE (2007)","DOI":"10.1109\/CVPR.2007.383188"},{"key":"31_CR27","doi-asserted-by":"publisher","unstructured":"Van\u00a0Hecke, W., Emsell, L., Sunaert, S.: Diffusion Tensor Imaging: A Practical Handbook, Springer, New York (2015). https:\/\/doi.org\/10.1007\/978-1-4939-3118-7","DOI":"10.1007\/978-1-4939-3118-7"},{"key":"31_CR28","unstructured":"Zhang, M., Fletcher, T.: Probabilistic principal geodesic analysis. In: Advances in Neural Information Processing Systems, pp. 1178\u20131186 (2013)"},{"issue":"12","key":"31_CR29","doi-asserted-by":"publisher","first-page":"2568","DOI":"10.1109\/TMI.2016.2587628","volume":"35","author":"Y Zhang","year":"2016","unstructured":"Zhang, Y., Shi, F., Wu, G., Wang, L., Yap, P.T., Shen, D.: Consistent spatial-temporal longitudinal atlas construction for developing infant brains. IEEE Trans. Med. Imag. 35(12), 2568\u20132577 (2016)","journal-title":"IEEE Trans. Med. Imag."}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-59728-3_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T03:36:01Z","timestamp":1619235361000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-59728-3_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030597276","9783030597283"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-59728-3_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"29 September 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors declare that there are no conflicts or commercial interest related to this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest Statement"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lima","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Peru","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miccai2020.org\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1809","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"542","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}