{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:08:52Z","timestamp":1726762132068},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030597122"},{"type":"electronic","value":"9783030597139"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-59713-9_41","type":"book-chapter","created":{"date-parts":[[2020,10,2]],"date-time":"2020-10-02T09:06:21Z","timestamp":1601629581000},"page":"421-430","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["CDF-Net: Cross-Domain Fusion Network for Accelerated MRI Reconstruction"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8461-3557","authenticated-orcid":false,"given":"Osvald","family":"Nitski","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5652-125X","authenticated-orcid":false,"given":"Sayan","family":"Nag","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1371-1250","authenticated-orcid":false,"given":"Chris","family":"McIntosh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9620-3413","authenticated-orcid":false,"given":"Bo","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,29]]},"reference":[{"issue":"7697","key":"41_CR1","doi-asserted-by":"publisher","first-page":"487","DOI":"10.1038\/nature25988","volume":"555","author":"B Zhu","year":"2018","unstructured":"Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R.: Image reconstruction by domain transform manifold learning. Nature 555(7697), 487 (2018)","journal-title":"Nature"},{"issue":"6","key":"41_CR2","doi-asserted-by":"publisher","first-page":"823","DOI":"10.1002\/mrm.1910030602","volume":"3","author":"J Hennig","year":"1986","unstructured":"Hennig, J., Nauerth, A., Friedburg, H.: Rare imaging: a fast imaging method for clinical MR. Magn. Reson. Med. 3(6), 823\u2013833 (1986)","journal-title":"Magn. Reson. Med."},{"issue":"1","key":"41_CR3","first-page":"15","volume":"54","author":"A Oppelt","year":"1986","unstructured":"Oppelt, A., Graumann, R., Barfuss, H., Fischer, H., Hartl, W., Schajor, W.: FISP - a new fast MRI sequence. Electromedica 54(1), 15\u201318 (1986)","journal-title":"Electromedica"},{"key":"41_CR4","doi-asserted-by":"crossref","unstructured":"Moratal, D., Valles-Luch, A., Marti-Bonmati, L., Brummer, M.E.: k-space tutorial: an MRI educational tool for a better understanding of k-space. Biomed. Imaging Interv. J. 4(1) (2008)","DOI":"10.2349\/biij.4.1.e15"},{"key":"41_CR5","unstructured":"Knoll, F., et al.: Deep learning methods for parallel magnetic resonance image reconstruction. Preprint arXiv:1904 (2019)"},{"key":"41_CR6","doi-asserted-by":"publisher","first-page":"3055","DOI":"10.1002\/mrm.26977","volume":"79","author":"T Klatzer","year":"2018","unstructured":"Klatzer, T., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79, 3055\u20133071 (2018)","journal-title":"Magn. Reson. Med."},{"issue":"2","key":"41_CR7","doi-asserted-by":"publisher","first-page":"394","DOI":"10.1109\/TMI.2018.2865356","volume":"38","author":"HK Aggarwal","year":"2018","unstructured":"Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394\u2013405 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"41_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1007\/978-3-030-00928-1_21","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"P Zhang","year":"2018","unstructured":"Zhang, P., Wang, F., Xu, W., Li, Yu.: Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in K-space. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 180\u2013188. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00928-1_21"},{"key":"41_CR9","doi-asserted-by":"crossref","unstructured":"Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging, pp. 1622\u20131626 (2019)","DOI":"10.1109\/ISBI.2019.8759423"},{"key":"41_CR10","unstructured":"L\u00f8nning, K., Putzky, P., Caan, M.W.A., Welling, M.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. Int. Soc. Magn. Reson. Med. (2018)"},{"issue":"2","key":"41_CR11","first-page":"493","volume":"37","author":"J Schlemper","year":"2017","unstructured":"Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 493\u2013501 (2017)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"41_CR12","doi-asserted-by":"publisher","first-page":"280","DOI":"10.1109\/TMI.2018.2863670","volume":"38","author":"J Schlemper","year":"2019","unstructured":"Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D., Qin, C.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280\u2013290 (2019)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"5","key":"41_CR13","doi-asserted-by":"publisher","first-page":"2188","DOI":"10.1002\/mrm.27201","volume":"80","author":"T Eo","year":"2018","unstructured":"Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.-J., Hwang, D.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188\u20132201 (2018)","journal-title":"Magn. Reson. Med."},{"key":"41_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"41_CR15","unstructured":"Chen, K., Wang, J., Chen, L.-C., Gao, H., Xu, W., Nevatia, R.: ABC-CNN: an attention based convolutional neural network for visual question answering. arXiv preprint arXiv:1511.05960 (2015)"},{"key":"41_CR16","doi-asserted-by":"crossref","unstructured":"Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional net-works. arXiv preprint arXiv:1904.09925 (2019)","DOI":"10.1109\/ICCV.2019.00338"},{"issue":"3","key":"41_CR17","doi-asserted-by":"publisher","first-page":"990","DOI":"10.1002\/mrm.24751","volume":"71","author":"M Uecker","year":"2014","unstructured":"Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets GRAPPA. Magn. Reson. Med. 71(3), 990\u20131001 (2014)","journal-title":"Magn. Reson. Med."},{"key":"41_CR18","unstructured":"Tygert, M., Zbontar, J.: fastMRI: an open dataset and benchmarks for accelerated MRI. Preprint arXiv:1811.08839 (2018)"},{"key":"41_CR19","unstructured":"Tygert, M., Zbontar, J.: Simulating single-coil MRI from the responses of multiple coils. Preprint arXiv:1811.08026 (2018)"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-59713-9_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T14:17:17Z","timestamp":1619273837000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-59713-9_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030597122","9783030597139"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-59713-9_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"29 September 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lima","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Peru","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miccai2020.org\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1809","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"542","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}