{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T23:47:13Z","timestamp":1726098433749},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030592769"},{"type":"electronic","value":"9783030592776"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-59277-6_3","type":"book-chapter","created":{"date-parts":[[2020,9,18]],"date-time":"2020-09-18T19:02:32Z","timestamp":1600455752000},"page":"29-40","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["A Systematic Assessment of Feature Extraction Methods for Robust Prediction of Neuropsychological Scores from Functional Connectivity Data"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7481-4064","authenticated-orcid":false,"given":"Federico","family":"Calesella","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7062-4861","authenticated-orcid":false,"given":"Alberto","family":"Testolin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3682-8582","authenticated-orcid":false,"given":"Michele","family":"De Filippo De Grazia","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4651-6390","authenticated-orcid":false,"given":"Marco","family":"Zorzi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,15]]},"reference":[{"key":"3_CR1","doi-asserted-by":"publisher","first-page":"537","DOI":"10.1002\/mrm.1910340409","volume":"34","author":"B Biswal","year":"1995","unstructured":"Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537\u2013541 (1995)","journal-title":"Magn. Reson. Med."},{"key":"3_CR2","doi-asserted-by":"crossref","unstructured":"Salvalaggio, A., de Filippo De Grazia, M., Zorzi, M., de Schotten, M.T., Corbetta, M.: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain 143(7), 2173\u20132188 (2020). awaa156","DOI":"10.1093\/brain\/awaa156"},{"key":"3_CR3","doi-asserted-by":"publisher","first-page":"E4367","DOI":"10.1073\/pnas.1521083113","volume":"113","author":"JS Siegel","year":"2016","unstructured":"Siegel, J.S., et al.: Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc. Nat. Acad. Sci. US Am. 113, E4367\u2013E4376 (2016)","journal-title":"Proc. Nat. Acad. Sci. US Am."},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences. 10, 424\u2013430 (2006)","DOI":"10.1016\/j.tics.2006.07.005"},{"key":"3_CR5","doi-asserted-by":"publisher","first-page":"S199","DOI":"10.1016\/j.neuroimage.2008.11.007","volume":"45","author":"F Pereira","year":"2009","unstructured":"Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45, S199\u2013S209 (2009)","journal-title":"NeuroImage"},{"key":"3_CR6","doi-asserted-by":"publisher","first-page":"1358","DOI":"10.1126\/science.1194144","volume":"329","author":"NUF Dosenbach","year":"2010","unstructured":"Dosenbach, N.U.F., et al.: Prediction of individual brain maturity using fMRI. Science 329, 1358\u20131361 (2010)","journal-title":"Science"},{"issue":"2","key":"3_CR7","doi-asserted-by":"publisher","first-page":"229","DOI":"10.1007\/s12021-013-9204-3","volume":"12","author":"B Mwangi","year":"2013","unstructured":"Mwangi, B., Tian, T.S., Soares, J.C.: A review of feature reduction techniques in neuroimaging. Neuroinformatics 12(2), 229\u2013244 (2013)","journal-title":"Neuroinformatics"},{"key":"3_CR8","first-page":"1157","volume":"3","author":"I Guyon","year":"2003","unstructured":"Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157\u20131182 (2003)","journal-title":"J. Mach. Learn. Res."},{"key":"3_CR9","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1016\/j.patcog.2008.08.001","volume":"42","author":"J Hua","year":"2009","unstructured":"Hua, J., Tembe, W.D., Dougherty, E.R.: Performance of feature-selection methods in the classification of high-dimension data. Pattern Recogn. 42, 409\u2013424 (2009)","journal-title":"Pattern Recogn."},{"key":"3_CR10","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/j.neuroimage.2008.08.020","volume":"44","author":"MK Carroll","year":"2009","unstructured":"Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44, 112\u2013122 (2009)","journal-title":"NeuroImage"},{"key":"3_CR11","doi-asserted-by":"publisher","first-page":"1388","DOI":"10.1056\/NEJMoa1204471","volume":"368","author":"TD Wager","year":"2013","unstructured":"Wager, T.D., Atlas, L.Y., Lindquist, M.A., Roy, M., Woo, C.W., Kross, E.: An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388\u20131397 (2013)","journal-title":"N. Engl. J. Med."},{"key":"3_CR12","doi-asserted-by":"publisher","first-page":"583","DOI":"10.1016\/j.nicl.2015.05.006","volume":"8","author":"SJ Teipel","year":"2015","unstructured":"Teipel, S.J., Kurth, J., Krause, B., Grothe, M.J.: The relative importance of imaging markers for the prediction of Alzheimer\u2019s disease dementia in mild cognitive impairment - beyond classical regression. NeuroImage Clin. 8, 583\u2013593 (2015)","journal-title":"NeuroImage Clin."},{"key":"3_CR13","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R Tibshirani","year":"1996","unstructured":"Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58, 267\u2013288 (1996)","journal-title":"J. Roy. Stat. Soc.: Ser. B (Methodol.)"},{"key":"3_CR14","doi-asserted-by":"publisher","first-page":"1733","DOI":"10.1214\/08-AOS625","volume":"37","author":"H Zou","year":"2009","unstructured":"Zou, H., Zhang, H.H.: On the adaptive elastic-net with a diverging number of parameters. Ann. Stat. 37, 1733\u20131751 (2009)","journal-title":"Ann. Stat."},{"key":"3_CR15","doi-asserted-by":"publisher","first-page":"622","DOI":"10.1016\/j.neuroimage.2018.06.001","volume":"178","author":"Z Cui","year":"2018","unstructured":"Cui, Z., Gong, G.: The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. NeuroImage 178, 622\u2013637 (2018)","journal-title":"NeuroImage"},{"key":"3_CR16","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1016\/j.neuron.2015.05.025","volume":"87","author":"JD Haynes","year":"2015","unstructured":"Haynes, J.D.: A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 87, 257\u2013270 (2015)","journal-title":"Neuron"},{"key":"3_CR17","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1016\/j.neuroimage.2019.05.082","volume":"199","author":"L Jollans","year":"2019","unstructured":"Jollans, L., et al.: Quantifying performance of machine learning methods for neuroimaging data. NeuroImage 199, 351\u2013365 (2019)","journal-title":"NeuroImage"},{"key":"3_CR18","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1038\/nature18933","volume":"536","author":"MF Glasser","year":"2016","unstructured":"Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171\u2013178 (2016)","journal-title":"Nature"},{"key":"3_CR19","unstructured":"Jolliffe, I.T.: Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science (2002)"},{"key":"3_CR20","first-page":"1533","volume":"40","author":"J Mour\u00e3o-Miranda","year":"2005","unstructured":"Mour\u00e3o-Miranda, J., Bokde, A.L.W., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage 40, 1533\u20131541 (2005)","journal-title":"NeuroImage"},{"key":"3_CR21","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1109\/MEMB.2006.1607672","volume":"25","author":"VD Calhoun","year":"2006","unstructured":"Calhoun, V.D., Adali, T.: Unmixing fMRI with independent component analysis. IEEE Eng. Med. Biol. Mag. 25, 79\u201390 (2006)","journal-title":"IEEE Eng. Med. Biol. Mag."},{"key":"3_CR22","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1016\/S0893-6080(00)00026-5","volume":"13","author":"A Hyv\u00e4rinen","year":"2000","unstructured":"Hyv\u00e4rinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13, 411\u2013430 (2000)","journal-title":"Neural Netw."},{"key":"3_CR23","doi-asserted-by":"crossref","unstructured":"Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ACM International Conference Proceeding Series, pp. 689\u2013696 (2009)","DOI":"10.1145\/1553374.1553463"},{"key":"3_CR24","unstructured":"Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556\u2013562 (2001)"},{"key":"3_CR25","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/j.csda.2006.11.006","volume":"52","author":"MW Berry","year":"2007","unstructured":"Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52, 155\u2013173 (2007)","journal-title":"Comput. Stat. Data Anal."},{"key":"3_CR26","doi-asserted-by":"crossref","unstructured":"Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics (2009)","DOI":"10.1007\/978-0-387-84858-7"},{"key":"3_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v033.i01","volume":"33","author":"J Friedman","year":"2010","unstructured":"Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1\u201322 (2010)","journal-title":"J. Stat. Softw."},{"key":"3_CR28","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1214\/aos\/1176344136","volume":"6","author":"G Schwarz","year":"1978","unstructured":"Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461\u2013464 (1978)","journal-title":"Ann. Stat."},{"key":"3_CR29","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1\u201330 (2006)","journal-title":"J. Mach. Learn. Res."},{"key":"3_CR30","doi-asserted-by":"crossref","unstructured":"Chauhan, S., Vig, L., de Filippo De Grazia, M., Corbetta, M., Ahmad, S., Zorzi, M.: A comparison of shallow and deep learning methods for predicting cognitive performance of stroke patients from MRI lesion images. Front. Neuroinform. 13, 53 (2019)","DOI":"10.3389\/fninf.2019.00053"}],"container-title":["Lecture Notes in Computer Science","Brain Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-59277-6_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,14]],"date-time":"2024-08-14T04:36:47Z","timestamp":1723610207000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-59277-6_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030592769","9783030592776"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-59277-6_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"15 September 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Brain Informatics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Padua","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"brain2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.bi2020.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Cyberchair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"57","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"58% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}