{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T23:42:25Z","timestamp":1726098145074},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030589417"},{"type":"electronic","value":"9783030589424"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-58942-4_17","type":"book-chapter","created":{"date-parts":[[2020,9,18]],"date-time":"2020-09-18T06:03:58Z","timestamp":1600409038000},"page":"256-272","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["An Exact CP Approach for the Cardinality-Constrained Euclidean Minimum Sum-of-Squares Clustering Problem"],"prefix":"10.1007","author":[{"given":"Mohammed Najib","family":"Haouas","sequence":"first","affiliation":[]},{"given":"Daniel","family":"Aloise","sequence":"additional","affiliation":[]},{"given":"Gilles","family":"Pesant","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,19]]},"reference":[{"issue":"2","key":"17_CR1","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1007\/s10994-009-5103-0","volume":"75","author":"D Aloise","year":"2009","unstructured":"Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245\u2013248 (2009)","journal-title":"Mach. Learn."},{"issue":"3","key":"17_CR2","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1007\/s10898-010-9571-3","volume":"49","author":"D Aloise","year":"2011","unstructured":"Aloise, D., Hansen, P.: Evaluating a branch-and-bound rlt-based algorithm for minimum sum-of-squares clustering. J. Global Optim. 49(3), 449\u2013465 (2011)","journal-title":"J. Global Optim."},{"key":"17_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"438","DOI":"10.1007\/978-3-319-07046-9_31","volume-title":"Integration of AI and OR Techniques in Constraint Programming","author":"B Babaki","year":"2014","unstructured":"Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 438\u2013454. Springer, Cham (2014). \nhttps:\/\/doi.org\/10.1007\/978-3-319-07046-9_31"},{"key":"17_CR4","unstructured":"Balcan, M.F., Ehrlich, S., Liang, Y.: Distributed k-means and k-median clustering on general topologies. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2013, pp. 1995\u20132003, USA. Curran Associates Inc. (2013)"},{"issue":"3","key":"17_CR5","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1007\/s10618-006-0040-z","volume":"13","author":"A Banerjee","year":"2006","unstructured":"Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing constraints. Data Min. Knowl. Disc. 13(3), 365\u2013395 (2006)","journal-title":"Data Min. Knowl. Disc."},{"key":"17_CR6","doi-asserted-by":"crossref","unstructured":"Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algorithms, Theory, and Applications, 1st edn. Chapman & Hall\/CRC (2008)","DOI":"10.1201\/9781584889977"},{"issue":"1","key":"17_CR7","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1090\/qam\/102435","volume":"16","author":"R Bellman","year":"1958","unstructured":"Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87\u201390 (1958)","journal-title":"Q. Appl. Math."},{"key":"17_CR8","unstructured":"Bennett, K.P., Bradley, P.S., Demiriz, A.: Constrained k-means clustering. Technical report MSR-TR-2000-65, Microsoft Research, May 2000"},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"Bertoni, A., Goldwurm, M., Lin, J., Sacc\u00e0, F.: Size constrained distance clustering: separation properties and some complexity results. Fundamenta Informaticae 115, 125\u2013139 (2012)","DOI":"10.3233\/FI-2012-644"},{"issue":"2","key":"17_CR10","doi-asserted-by":"publisher","first-page":"347","DOI":"10.1007\/s11336-004-1218-1","volume":"71","author":"MJ Brusco","year":"2006","unstructured":"Brusco, M.J.: A repetitive branch-and-bound procedure for minimum within-cluster sums of squares partitioning. Psychometrika 71(2), 347\u2013363 (2006)","journal-title":"Psychometrika"},{"issue":"11","key":"17_CR11","doi-asserted-by":"publisher","first-page":"2748","DOI":"10.1016\/j.cor.2012.02.007","volume":"39","author":"RA Carbonneau","year":"2012","unstructured":"Carbonneau, R.A., Caporossi, G., Hansen, P.: Extensions to the repetitive branch and bound algorithm for globally optimal clusterwise regression. Comput. Opera. Res. 39(11), 2748\u20132762 (2012)","journal-title":"Comput. Opera. Res."},{"key":"17_CR12","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1016\/j.ins.2017.06.019","volume":"415\u2013416","author":"LR Costa","year":"2017","unstructured":"Costa, L.R., Aloise, D., Mladenovi\u0107, N.: Less is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering. Inf. Sci. 415\u2013416, 247\u2013253 (2017)","journal-title":"Inf. Sci."},{"key":"17_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"557","DOI":"10.1007\/978-3-319-23219-5_39","volume-title":"Principles and Practice of Constraint Programming","author":"T-B-H Dao","year":"2015","unstructured":"Dao, T.-B.-H., Duong, K.-C., Vrain, C.: Constrained minimum sum of squares clustering by constraint programming. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 557\u2013573. Springer, Cham (2015). \nhttps:\/\/doi.org\/10.1007\/978-3-319-23219-5_39"},{"key":"17_CR14","doi-asserted-by":"crossref","unstructured":"Dao, T.-B.-H., Duong, K.-C., Vrain, C.: Constrained clustering by constraint programming. Artif. Intell. 244, 70\u201394 (2017). Combining Constraint Solving with Mining and Learning","DOI":"10.1016\/j.artint.2015.05.006"},{"issue":"1","key":"17_CR15","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1057\/palgrave.jors.2601775","volume":"56","author":"J Desrosiers","year":"2005","unstructured":"Desrosiers, J., Mladenovi\u0107, N., Villeneuve, D.: Design of balanced mba student teams. J. Oper. Res. Soc. 56(1), 60\u201366 (2005)","journal-title":"J. Oper. Res. Soc."},{"key":"17_CR16","unstructured":"Guns, T., Dao, T.-B.-H., Vrain, C., Duong, K.-C.: Repetitive branch-and-bound using constraint programming for constrained minimum sum-of-squares clustering. In: Proceedings of the Twenty-Second European Conference on Artificial Intelligence, ECAI 2016, pp. 462\u2013470. IOS Press, Amsterdam (2016)"},{"issue":"9","key":"17_CR17","doi-asserted-by":"publisher","first-page":"1074","DOI":"10.1109\/43.159993","volume":"11","author":"L Hagen","year":"1992","unstructured":"Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 11(9), 1074\u20131085 (1992)","journal-title":"IEEE Trans. Comput. Aided Des. Integr. Circuits Syst."},{"key":"17_CR18","volume-title":"Multivariate Data Analysis","author":"JF Hair","year":"1998","unstructured":"Hair, J.F., Tatham, R.L., Anderson, R.E., Black, W.: Multivariate Data Analysis, 5th edn. Pearson, New York (1998)","edition":"5"},{"key":"17_CR19","unstructured":"Jungnickel, D.: The network simplex algorithm. In: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, pp. 321\u2013339. Springer, Heidelberg (2005)"},{"key":"17_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"362","DOI":"10.1007\/978-3-540-30201-8_28","volume-title":"Principles and Practice of Constraint Programming \u2013 CP 2004","author":"YC Law","year":"2004","unstructured":"Law, Y.C., Lee, J.H.M.: Global constraints for integer and set value precedence. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 362\u2013376. Springer, Heidelberg (2004). \nhttps:\/\/doi.org\/10.1007\/978-3-540-30201-8_28"},{"key":"17_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"542","DOI":"10.1007\/978-3-540-30201-8_40","volume-title":"Principles and Practice of Constraint Programming \u2013 CP 2004","author":"C-G Quimper","year":"2004","unstructured":"Quimper, C.-G., L\u00f3pez-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 542\u2013556. Springer, Heidelberg (2004). \nhttps:\/\/doi.org\/10.1007\/978-3-540-30201-8_40"},{"key":"17_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"390","DOI":"10.1007\/978-3-540-48085-3_28","volume-title":"Principles and Practice of Constraint Programming \u2013 CP\u201999","author":"J-C R\u00e9gin","year":"1999","unstructured":"R\u00e9gin, J.-C.: Arc consistency for global cardinality constraints with costs. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 390\u2013404. Springer, Heidelberg (1999). \nhttps:\/\/doi.org\/10.1007\/978-3-540-48085-3_28"},{"issue":"2","key":"17_CR23","doi-asserted-by":"publisher","first-page":"1211","DOI":"10.1137\/17M1150670","volume":"29","author":"N Rujeerapaiboon","year":"2019","unstructured":"Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.: Size matters: cardinality-constrained clustering and outlier detection via conic optimization. SIAM J. Optim. 29(2), 1211\u20131239 (2019)","journal-title":"SIAM J. Optim."},{"issue":"3","key":"17_CR24","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1016\/S0020-0255(70)80056-1","volume":"2","author":"EH Ruspini","year":"1970","unstructured":"Ruspini, E.H.: Numerical methods for fuzzy clustering. Inf. Sci. 2(3), 319\u2013350 (1970)","journal-title":"Inf. Sci."},{"key":"17_CR25","doi-asserted-by":"publisher","first-page":"1587","DOI":"10.1109\/ACCESS.2019.2962191","volume":"8","author":"W Tang","year":"2020","unstructured":"Tang, W., Yang, Y., Zeng, L., Zhan, Y.: Size constrained clustering with milp formulation. IEEE Access 8, 1587\u20131599 (2020)","journal-title":"IEEE Access"},{"key":"17_CR26","unstructured":"Wagstaff, K., Cardie, C., Rogers, S., Schr\u00f6dl, S.: Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 577\u2013584. Morgan Kaufmann Publishers Inc., San Francisco (2001)"},{"key":"17_CR27","unstructured":"Walsh, T.: Symmetry breaking constraints: Recent results. In: AAAI Conference on Artificial Intelligence (2012)"},{"key":"17_CR28","unstructured":"Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1\u201337 (2008)"}],"container-title":["Lecture Notes in Computer Science","Integration of Constraint Programming, Artificial Intelligence, and Operations Research"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-58942-4_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,9,18]],"date-time":"2020-09-18T06:10:08Z","timestamp":1600409408000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-58942-4_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030589417","9783030589424"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-58942-4_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"19 September 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CPAIOR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vienna","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Austria","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 September 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cpaior2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/cpaior2020.dbai.tuwien.ac.at\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"72","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"35% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.08","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.08","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}