{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T00:00:09Z","timestamp":1726099209888},"publisher-location":"Cham","reference-count":63,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030588106"},{"type":"electronic","value":"9783030588113"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-58811-3_5","type":"book-chapter","created":{"date-parts":[[2020,9,28]],"date-time":"2020-09-28T08:04:50Z","timestamp":1601280290000},"page":"61-76","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Comparing Statistical and Machine Learning Imputation Techniques in Breast Cancer Classification"],"prefix":"10.1007","author":[{"given":"Imane","family":"Chlioui","sequence":"first","affiliation":[]},{"given":"Ibtissam","family":"Abnane","sequence":"additional","affiliation":[]},{"given":"Ali","family":"Idri","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,9,29]]},"reference":[{"key":"5_CR1","first-page":"610","volume":"7","author":"RJ Oskouei","year":"2017","unstructured":"Oskouei, R.J., Kor, N.M., Maleki, S.A.: Data mining and medical world: Breast cancers\u2019 diagnosis, treatment, prognosis and challenges. Am. J. Cancer Res. 7, 610\u2013627 (2017)","journal-title":"Am. J. Cancer Res."},{"key":"5_CR2","doi-asserted-by":"publisher","first-page":"247","DOI":"10.4172\/jcsb.1000037","volume":"02","author":"B Garg","year":"2009","unstructured":"Garg, B.: Optimizing number of inputs to classify breast cancer using artificial neural network. J. Comput. Sci. Syst. Biol. 02, 247\u2013254 (2009). https:\/\/doi.org\/10.4172\/jcsb.1000037","journal-title":"J. Comput. Sci. Syst. Biol."},{"key":"5_CR3","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.mpsur.2015.10.005","volume":"34","author":"M Sibbering","year":"2016","unstructured":"Sibbering, M., Courtney, C.A.: Management of breast cancer: basic principles. Surg. (United Kingdom) 34, 25\u201331 (2016). https:\/\/doi.org\/10.1016\/j.mpsur.2015.10.005","journal-title":"Surg. (United Kingdom)"},{"key":"5_CR4","doi-asserted-by":"publisher","first-page":"741","DOI":"10.1023\/A:1020239211145","volume":"13","author":"LM Morimoto","year":"2002","unstructured":"Morimoto, L.M., et al.: Obesity, body size, and risk of postmenopausal breast cancer: the women\u2019s health initiative (United States). Cancer Causes Control 13, 741\u2013751 (2002). https:\/\/doi.org\/10.1023\/A:1020239211145","journal-title":"Cancer Causes Control"},{"key":"5_CR5","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1037\/1082-989X.7.2.147","volume":"7","author":"JL Schafer","year":"2002","unstructured":"Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychol. Methods 7, 147\u2013177 (2002). https:\/\/doi.org\/10.1037\/1082-989X.7.2.147","journal-title":"Psychol. Methods"},{"key":"5_CR6","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"522","DOI":"10.1007\/978-3-642-22720-2_55","volume-title":"Advances in Computing and Communications","author":"VH Bhat","year":"2011","unstructured":"Bhat, V.H., Rao, P.G., Krishna, S., Shenoy, P.D., Venugopal, K.R., Patnaik, L.M.: An efficient framework for prediction in healthcare data using soft computing techniques. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011. CCIS, vol. 192, pp. 522\u2013532. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-22720-2_55"},{"key":"5_CR7","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.cmpb.2018.05.007","volume":"162","author":"A Idri","year":"2018","unstructured":"Idri, A., Benhar, H., Fern\u00e1ndez-Alem\u00e1n, J.L., Kadi, I.: A systematic map of medical data preprocessing in knowledge discovery. Comput. Methods Programs Biomed. 162, 69\u201385 (2018)","journal-title":"Comput. Methods Programs Biomed."},{"key":"5_CR8","doi-asserted-by":"crossref","unstructured":"Albayrak, M., Turhan, K., Informatics, M., Introduction, I.: A missing data imputation approach using clustering and maximum likelihood estimation. In: IEEE (ed.) 2017 Medical Technologies National Congress (TIPTEKNO), Trabzon, Turkey, pp. 1\u20134 (2017)","DOI":"10.1109\/TIPTEKNO.2017.8238064"},{"key":"5_CR9","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1016\/j.ijmedinf.2016.09.005","volume":"97","author":"I Kadi","year":"2017","unstructured":"Kadi, I., Idri, A., Fernandez-Aleman, J.L.: Knowledge discovery in cardiology: a systematic literature review. Int. J. Med. Inform. 97, 12\u201332 (2017). https:\/\/doi.org\/10.1016\/j.ijmedinf.2016.09.005","journal-title":"Int. J. Med. Inform."},{"issue":"3","key":"5_CR10","doi-asserted-by":"publisher","first-page":"284","DOI":"10.1007\/s11121-016-0644-5","volume":"19","author":"KM Lang","year":"2016","unstructured":"Lang, K.M., Little, T.D.: Principled missing data treatments. Prev. Sci. 19(3), 284\u2013294 (2016). https:\/\/doi.org\/10.1007\/s11121-016-0644-5","journal-title":"Prev. Sci."},{"key":"5_CR11","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1016\/j.jss.2016.04.058","volume":"117","author":"A Idri","year":"2016","unstructured":"Idri, A., Abnane, I., Abran, A.: Missing data techniques in analogy-based software development effort estimation. J. Syst. Softw. 117, 595\u2013611 (2016). https:\/\/doi.org\/10.1016\/j.jss.2016.04.058","journal-title":"J. Syst. Softw."},{"key":"5_CR12","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.artmed.2010.05.002","volume":"50","author":"JM Jerez","year":"2010","unstructured":"Jerez, J.M., et al.: Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 50, 105\u2013115 (2010). https:\/\/doi.org\/10.1016\/j.artmed.2010.05.002","journal-title":"Artif. Intell. Med."},{"key":"5_CR13","doi-asserted-by":"crossref","unstructured":"Gayathri, B.M., Sumathi, C.P.: Mamdani fuzzy inference system for breast cancer risk detection. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2015, Madurai, Tamilnadu, India, pp. 1\u20136 (2016)","DOI":"10.1109\/ICCIC.2015.7435670"},{"key":"5_CR14","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1080\/19312458.2011.624490","volume":"5","author":"TA Myers","year":"2011","unstructured":"Myers, T.A.: Goodbye, listwise deletion: presenting hot deck imputation as an easy and effective tool for handling missing data. Commun. Methods Meas. 5, 297\u2013310 (2011). https:\/\/doi.org\/10.1080\/19312458.2011.624490","journal-title":"Commun. Methods Meas."},{"key":"5_CR15","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1093\/aje\/kwh175","volume":"160","author":"F Barzi","year":"2004","unstructured":"Barzi, F., Woodward, M.: Imputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies. Am. J. Epidemiol. 160, 34\u201345 (2004). https:\/\/doi.org\/10.1093\/aje\/kwh175","journal-title":"Am. J. Epidemiol."},{"key":"5_CR16","doi-asserted-by":"publisher","DOI":"10.3390\/data2010008","author":"Y Liu","year":"2017","unstructured":"Liu, Y., Gopalakrishnan, V.: An overview and evaluation of recent machine learning imputation methods using cardiac imaging data. Data (2017). https:\/\/doi.org\/10.3390\/data2010008","journal-title":"Data"},{"key":"5_CR17","doi-asserted-by":"publisher","first-page":"961","DOI":"10.1111\/2041-210X.12232","volume":"5","author":"C Penone","year":"2014","unstructured":"Penone, C., et al.: Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961\u2013970 (2014). https:\/\/doi.org\/10.1111\/2041-210X.12232","journal-title":"Methods Ecol. Evol."},{"key":"5_CR18","doi-asserted-by":"crossref","unstructured":"Vateekul, P., Sarinnapakorn, K.: Tree-based approach to missing data imputation. In: ICDM Workshops 2009 - IEEE International Conference on Data Mining, pp. 70\u201375 (2009)","DOI":"10.1109\/ICDMW.2009.92"},{"key":"5_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1002\/smr.2114","volume":"30","author":"A Idri","year":"2018","unstructured":"Idri, A., Abnane, I., Abran, A.: Support vector regression-based imputation in analogy-based software development effort estimation. J. Softw. Evol. Process. 30, 1\u201323 (2018). https:\/\/doi.org\/10.1002\/smr.2114","journal-title":"J. Softw. Evol. Process."},{"issue":"1","key":"5_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s13755-019-0082-4","volume":"7","author":"X Wu","year":"2019","unstructured":"Wu, X., Akbarzadeh Khorshidi, H., Aickelin, U., Edib, Z., Peate, M.: Imputation techniques on missing values in breast cancer treatment and fertility data. Health Inf. Sci. Syst. 7(1), 1\u20138 (2019). https:\/\/doi.org\/10.1007\/s13755-019-0082-4","journal-title":"Health Inf. Sci. Syst."},{"key":"5_CR21","series-title":"STUDIES CLASS","doi-asserted-by":"publisher","first-page":"639","DOI":"10.1007\/978-3-642-17103-1_60","volume-title":"Classification, Clustering, and Data Mining Applications","author":"E Acu\u00f1a","year":"2004","unstructured":"Acu\u00f1a, E., Rodriguez, C.: The treatment of missing values and its effect on classifier accuracy. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications. STUDIES CLASS, pp. 639\u2013647. Springer, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-642-17103-1_60"},{"key":"5_CR22","unstructured":"Chlioui, I., Idri, A., Abnane, I.: Data preprocessing in knowledge discovery in breast cancer: systematic mapping study. Comput. Methods Biomech. Biomed. Eng. Imaging Vis., 1\u201315"},{"key":"5_CR23","doi-asserted-by":"publisher","first-page":"815","DOI":"10.1177\/019394502762477004","volume":"24","author":"CM Musil","year":"2002","unstructured":"Musil, C.M., Warner, C.B., Yobas, P.K., Jones, S.L.: A comparison of imputation techniques for handling Missing data. West. J. Nurs. Res. 24, 815\u2013829 (2002). https:\/\/doi.org\/10.1177\/019394502762477004","journal-title":"West. J. Nurs. Res."},{"key":"5_CR24","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"285","DOI":"10.1007\/978-3-319-59758-4_33","volume-title":"Artificial Intelligence in Medicine","author":"MS Santos","year":"2017","unstructured":"Santos, M.S., Soares, J.P., Henriques Abreu, P., Ara\u00fajo, H., Santos, J.: Influence of data distribution in missing data imputation. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 285\u2013294. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-59758-4_33"},{"key":"5_CR25","first-page":"412","volume":"1","author":"L Peng","year":"2005","unstructured":"Peng, L., Lei, L.: A review of missing data treatment methods. Int. J. Intell. Inf. Manag. Syst. Technol. 1, 412\u2013419 (2005)","journal-title":"Int. J. Intell. Inf. Manag. Syst. Technol."},{"key":"5_CR26","doi-asserted-by":"crossref","unstructured":"Moon, T.K.: The expectation-maximization algorithm (1996)","DOI":"10.1109\/79.543975"},{"key":"5_CR27","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1007\/978-3-030-16187-3_2","volume-title":"New Knowledge in Information Systems and Technologies","author":"I Chlioui","year":"2019","unstructured":"Chlioui, I., Idri, A., Abnane, I., de Gea, J.M.C., Fern\u00e1ndez-Alem\u00e1n, J.L.: Breast cancer classification with missing data imputation. In: Rocha, \u00c1., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2019. AISC, vol. 932, pp. 13\u201323. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-16187-3_2"},{"key":"5_CR28","unstructured":"Vapnik, V.: The Nature of Statistical Learning Theory (2013)"},{"key":"5_CR29","first-page":"699","volume":"11","author":"B Debasish","year":"2007","unstructured":"Debasish, B., Srimanta, P., Dipak Chandra, P.: Support vector regression. Neural Inf. Process. Lett. Rev. 11, 699\u2013708 (2007)","journal-title":"Neural Inf. Process. Lett. Rev."},{"key":"5_CR30","unstructured":"Drucker, H., Surges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems (1997)"},{"key":"5_CR31","doi-asserted-by":"crossref","unstructured":"Smola, A.J., Sch\u00f6lkopf, B.: A tutorial on support vector regression (2004)","DOI":"10.1002\/0470011815.b2a14038"},{"key":"5_CR32","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"999","DOI":"10.1007\/BFb0020283","volume-title":"Artificial Neural Networks \u2014 ICANN 1997","author":"K-R M\u00fcller","year":"1997","unstructured":"M\u00fcller, K.-R., Smola, A.J., R\u00e4tsch, G., Sch\u00f6lkopf, B., Kohlmorgen, J., Vapnik, V.: Predicting time series with support vector machines. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 999\u20131004. Springer, Heidelberg (1997). https:\/\/doi.org\/10.1007\/BFb0020283"},{"key":"5_CR33","volume-title":"C4.5: Programs for Machine Learning","author":"JR Quinlan","year":"1992","unstructured":"Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (1992)"},{"key":"5_CR34","unstructured":"Witten, I.H., Frank, E., Hall, M.A.: Data Mining. Elsevier, Amsterdam (2011)"},{"key":"5_CR35","unstructured":"Alpayd\u0131n, E.: Introduction to machine learning, London (2014)"},{"key":"5_CR36","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511801389","volume-title":"An Introduction to Support Vector Machines and Other Kernel Based Learning Methods","author":"N Cristianini","year":"2000","unstructured":"Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel Based Learning Methods. Cambridge University Press, Cambridge (2000)"},{"key":"5_CR37","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1023\/A:1009715923555","volume":"2","author":"CJC Burges","year":"1998","unstructured":"Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121\u2013167 (1998). https:\/\/doi.org\/10.1023\/A:1009715923555","journal-title":"Data Min. Knowl. Discov."},{"key":"5_CR38","doi-asserted-by":"publisher","first-page":"01","DOI":"10.9756\/bijaip.1127","volume":"2","author":"JR Marsilin","year":"2012","unstructured":"Marsilin, J.R.: An efficient CBIR approach for diagnosing the stages of breast cancer using KNN classifier. Bonfring Int. J. Adv. Image Process. 2, 01\u201305 (2012). https:\/\/doi.org\/10.9756\/bijaip.1127","journal-title":"Bonfring Int. J. Adv. Image Process."},{"key":"5_CR39","doi-asserted-by":"crossref","unstructured":"Odajima, K., Pawlovsky, A.P.: A detailed description of the use of the kNN method for breast cancer diagnosis. In: 2014 7th International Conference on BioMedical Engineering and Informatics, BMEI 2014, Dalian, China, pp. 688\u2013692 (2014)","DOI":"10.1109\/BMEI.2014.7002861"},{"key":"5_CR40","doi-asserted-by":"publisher","unstructured":"Kowarik, A., Templ, M.: Imputation with the R Package VIM. J. Stat. Softw. 74, 1\u201316 (2016). https:\/\/doi.org\/10.18637\/jss.v074.i07","DOI":"10.18637\/jss.v074.i07"},{"key":"5_CR41","doi-asserted-by":"crossref","unstructured":"Hu, S., Liang, Y., Ma, L., He, Y.: MSMOTE: improving classification performance when training data is imbalanced. In: 2nd International Workshop on Computer Science and Engineering, WCSE 2009, Qingdao, China, pp. 13\u201317 (2009)","DOI":"10.1109\/WCSE.2009.756"},{"key":"5_CR42","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45, 5\u201332 (2001). https:\/\/doi.org\/10.1023\/A:1010933404324","journal-title":"Mach. Learn."},{"key":"5_CR43","doi-asserted-by":"crossref","unstructured":"Pavlov, Y.L.: Random forest. In: Probabilistic Methods in Discrete Mathematics, pp. 11\u201318 (2000)","DOI":"10.1515\/9783112314074-003"},{"key":"5_CR44","doi-asserted-by":"crossref","unstructured":"Ghosh, S., Mondal, S., Ghosh, B.: A comparative study of breast cancer detection based on SVM and MLP BPN classifier. In: 1st International Conference on Automation, Control, Energy and Systems, ACES 2014, Hooghly, West Bengal, India, pp. 1\u20134 (2014)","DOI":"10.1109\/ACES.2014.6808002"},{"key":"5_CR45","volume-title":"Data Mining and Knowledge Discovery Handbook","author":"D Brockmann","year":"2006","unstructured":"Brockmann, D., Hufnagel, L., Geisel, T.: Data Mining and Knowledge Discovery Handbook. Springer, Boston (2006)"},{"key":"5_CR46","doi-asserted-by":"crossref","unstructured":"Jhajharia, S., Varshney, H.K., Verma, S., Kumar, R.: A neural network based breast cancer prognosis model with PCA processed features. In: 2016 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2016, Jaipur, India, pp. 1896\u20131901 (2016)","DOI":"10.1109\/ICACCI.2016.7732327"},{"key":"5_CR47","doi-asserted-by":"publisher","unstructured":"Song, Q., Shepperd, M., Chen, X., Liu, J.: Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation. J. Syst. Softw. 81, 2361\u20132370 (2008). https:\/\/doi.org\/10.1016\/j.jss.2008.05.008","DOI":"10.1016\/j.jss.2008.05.008"},{"key":"5_CR48","unstructured":"Dua, D., Graff, C.: UCI Machine Learning Repository. http:\/\/archive.ics.uci.edu\/ml"},{"key":"5_CR49","doi-asserted-by":"crossref","unstructured":"Chlioui, I., Idri, A., Abnane, I., de Gea, J.M.C., Fern\u00e1ndez-Alem\u00e1n, J.L.: Breast cancer classification with missing data imputation (2019)","DOI":"10.1007\/978-3-030-16187-3_2"},{"key":"5_CR50","doi-asserted-by":"crossref","unstructured":"Idri, A., Hosni, M., Abnane, I., Carrillo de Gea, J.M., Fern\u00e1ndez Alem\u00e1n, J.L.: Impact of parameter tuning on machine learning based breast cancer classification. In: World Conference on Information Systems and Technologies, Galicia, Spain, pp. 115\u2013125 (2019)","DOI":"10.1007\/978-3-030-16187-3_12"},{"key":"5_CR51","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1007\/978-3-642-02172-5_57","volume-title":"Pattern Recognition and Image Analysis","author":"V Garc\u00eda","year":"2009","unstructured":"Garc\u00eda, V., Mollineda, R.A., S\u00e1nchez, J.S.: Index of balanced accuracy: a performance measure for skewed class distributions. In: Araujo, H., Mendon\u00e7a, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 441\u2013448. Springer, Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-642-02172-5_57"},{"key":"5_CR52","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1016\/j.eswa.2006.08.029","volume":"34","author":"T Jonsdottir","year":"2008","unstructured":"Jonsdottir, T., Hvannberg, E.T., Sigurdsson, H., Sigurdsson, S.: The feasibility of constructing a Predictive Outcome Model for breast cancer using the tools of data mining. Expert Syst. Appl. 34, 108\u2013118 (2008). https:\/\/doi.org\/10.1016\/j.eswa.2006.08.029","journal-title":"Expert Syst. Appl."},{"key":"5_CR53","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1177\/001316446002000104","volume":"20","author":"J Cohen","year":"1960","unstructured":"Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37\u201346 (1960). https:\/\/doi.org\/10.1177\/001316446002000104","journal-title":"Educ. Psychol. Meas."},{"key":"5_CR54","unstructured":"Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Advances in Neural Information Processing Systems, pp. 313\u2013320 (2004)"},{"key":"5_CR55","doi-asserted-by":"publisher","unstructured":"Jelihovschi, E., Faria, J.C., Allaman, I.B.: ScottKnott: a package for performing the Scott-Knott clustering algorithm in R. TEMA (S\u00e3o Carlos) 15, 003 (2014). https:\/\/doi.org\/10.5540\/tema.2014.015.01.0003","DOI":"10.5540\/tema.2014.015.01.0003"},{"issue":"18","key":"5_CR56","doi-asserted-by":"publisher","first-page":"5977","DOI":"10.1007\/s00500-017-2945-4","volume":"22","author":"M Hosni","year":"2017","unstructured":"Hosni, M., Idri, A., Abran, A., Nassif, A.B.: On the value of parameter tuning in heterogeneous ensembles effort estimation. Soft. Comput. 22(18), 5977\u20136010 (2017). https:\/\/doi.org\/10.1007\/s00500-017-2945-4","journal-title":"Soft. Comput."},{"key":"5_CR57","unstructured":"Vuurpijl, L., Schomaker, L.: An overview and comparison of voting methods for pattern recognition. In: IEEE (ed.) Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 195\u2013200 (2002)"},{"key":"5_CR58","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1007\/s00521-009-0295-6","volume":"19","author":"PJ Garc\u00eda-Laencina","year":"2010","unstructured":"Garc\u00eda-Laencina, P.J., Sancho-G\u00f3mez, J.L., Figueiras-Vidal, A.R.: Pattern classification with missing data: a review. Neural Comput. Appl. 19, 263\u2013282 (2010). https:\/\/doi.org\/10.1007\/s00521-009-0295-6","journal-title":"Neural Comput. Appl."},{"key":"5_CR59","doi-asserted-by":"publisher","first-page":"317","DOI":"10.1023\/A:1009752403260","volume":"1","author":"SL Salzberg","year":"1997","unstructured":"Salzberg, S.L.: On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1, 317\u2013328 (1997). https:\/\/doi.org\/10.1023\/A:1009752403260","journal-title":"Data Min. Knowl. Discov."},{"key":"5_CR60","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.cmpb.2019.05.019","volume":"177","author":"M Hosni","year":"2019","unstructured":"Hosni, M., Abnane, I., Idri, A., de Gea, J.M.C., Alem\u00e1n, J.L.F.: Reviewing ensemble classification methods in breast cancer. Comput. Methods Programs Biomed. 177, 89\u2013112 (2019). https:\/\/doi.org\/10.1016\/j.cmpb.2019.05.019","journal-title":"Comput. Methods Programs Biomed."},{"key":"5_CR61","doi-asserted-by":"crossref","unstructured":"Abnane, I., Hosni, M., Idri, A., Abran, A.: Analogy software effort estimation using ensemble KNN imputation. In: IEEE (ed.) 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Kallithea, Greece, pp. 228\u2013235 (2019)","DOI":"10.1109\/SEAA.2019.00044"},{"key":"5_CR62","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1080\/08839510902872223","volume":"23","author":"B Twala","year":"2009","unstructured":"Twala, B.: An empirical comparison of techniques for handling incomplete data using decision trees. Appl. Artif. Intell. 23, 373\u2013405 (2009). https:\/\/doi.org\/10.1080\/08839510902872223","journal-title":"Appl. Artif. Intell."},{"key":"5_CR63","doi-asserted-by":"crossref","unstructured":"Abnane, I., Idri, A.: Improved analogy-based effort estimation with incomplete mixed data. In: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Pozna\u0144, Poland, pp. 1015\u20131024 (2018)","DOI":"10.15439\/2018F95"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-58811-3_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,20]],"date-time":"2022-11-20T19:03:07Z","timestamp":1668970987000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-58811-3_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030588106","9783030588113"],"references-count":63,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-58811-3_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"29 September 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cagliari","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 July 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Cyber chair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1450","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"466","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Conference was held virtually due to COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}