{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T20:05:54Z","timestamp":1743105954900,"version":"3.40.3"},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030586034"},{"type":"electronic","value":"9783030586041"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-58604-1_43","type":"book-chapter","created":{"date-parts":[[2020,11,2]],"date-time":"2020-11-02T22:02:49Z","timestamp":1604354569000},"page":"720-735","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":29,"title":["Online Continual Learning Under Extreme Memory Constraints"],"prefix":"10.1007","author":[{"given":"Enrico","family":"Fini","sequence":"first","affiliation":[]},{"given":"St\u00e9phane","family":"Lathuili\u00e8re","sequence":"additional","affiliation":[]},{"given":"Enver","family":"Sangineto","sequence":"additional","affiliation":[]},{"given":"Moin","family":"Nabi","sequence":"additional","affiliation":[]},{"given":"Elisa","family":"Ricci","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,3]]},"reference":[{"key":"43_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1007\/978-3-030-01219-9_9","volume-title":"Computer Vision \u2013 ECCV 2018","author":"R Aljundi","year":"2018","unstructured":"Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144\u2013161. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01219-9_9"},{"key":"43_CR2","unstructured":"Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. In: NeurIPS, pp. 11849\u201311860 (2019)"},{"key":"43_CR3","doi-asserted-by":"crossref","unstructured":"Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.01151"},{"key":"43_CR4","unstructured":"Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: NeurIPS (2019)"},{"key":"43_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/978-3-030-01258-8_15","volume-title":"Computer Vision \u2013 ECCV 2018","author":"FM Castro","year":"2018","unstructured":"Castro, F.M., Mar\u00edn-Jim\u00e9nez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241\u2013257. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01258-8_15"},{"key":"43_CR6","doi-asserted-by":"crossref","unstructured":"Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: CVPR, pp. 9233\u20139242 (2020)","DOI":"10.1109\/CVPR42600.2020.00925"},{"key":"43_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"556","DOI":"10.1007\/978-3-030-01252-6_33","volume-title":"Computer Vision \u2013 ECCV 2018","author":"A Chaudhry","year":"2018","unstructured":"Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556\u2013572. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01252-6_33"},{"key":"43_CR8","doi-asserted-by":"crossref","unstructured":"Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00528"},{"key":"43_CR9","volume-title":"Pattern Classification","author":"RO Duda","year":"2000","unstructured":"Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)","edition":"2"},{"key":"43_CR10","unstructured":"Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. arXiv preprint arXiv:1805.09733 (2018)"},{"key":"43_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"43_CR12","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. stat (2015)"},{"key":"43_CR13","doi-asserted-by":"crossref","unstructured":"Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00092"},{"key":"43_CR14","unstructured":"Javed, K., White, M.: Meta-learning representations for continual learning. In: NeurIPS, pp. 1820\u20131830 (2019)"},{"key":"43_CR15","doi-asserted-by":"crossref","unstructured":"Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. In: PNAS (2017)","DOI":"10.1073\/pnas.1611835114"},{"key":"43_CR16","unstructured":"Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)"},{"key":"43_CR17","unstructured":"Lange, M.D., et al.: Continual learning: a comparative study on how to defy forgetting in classification tasks. arXiv:1909.08383 (2019)"},{"key":"43_CR18","unstructured":"LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http:\/\/yann.lecun.com\/exdb\/mnist\/"},{"key":"43_CR19","unstructured":"Lee, S., Ha, J., Zhang, D., Kim, G.: A neural dirichlet process mixture model for task-free continual learning. In: ICLR (2020)"},{"issue":"12","key":"43_CR20","doi-asserted-by":"publisher","first-page":"2935","DOI":"10.1109\/TPAMI.2017.2773081","volume":"40","author":"Z Li","year":"2017","unstructured":"Li, Z., Hoiem, D.: Learning without forgetting. IEEE T-PAMI 40(12), 2935\u20132947 (2017)","journal-title":"IEEE T-PAMI"},{"key":"43_CR21","unstructured":"Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: NIPS (2017)"},{"key":"43_CR22","doi-asserted-by":"crossref","unstructured":"Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00810"},{"key":"43_CR23","unstructured":"Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS (2011)"},{"key":"43_CR24","doi-asserted-by":"crossref","unstructured":"Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., Nabi, M.: Learning to remember: a synaptic plasticity driven framework for continual learning. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.01158"},{"key":"43_CR25","unstructured":"Paszke, A., et al.: Automatic differentiation in pytorch (2017)"},{"key":"43_CR26","doi-asserted-by":"crossref","unstructured":"Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.587"},{"key":"43_CR27","unstructured":"Riemer, M., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910 (2018)"},{"key":"43_CR28","unstructured":"Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)"},{"key":"43_CR29","unstructured":"Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NeurIPS (2017)"},{"key":"43_CR30","unstructured":"Wu, C., Herranz, L., Liu, X., van de Weijer, J., Raducanu, B., et al.: Memory replay GANs: learning to generate new categories without forgetting. In: NeurIPS (2018)"},{"key":"43_CR31","doi-asserted-by":"crossref","unstructured":"Wu, Y., et al.: Large scale incremental learning. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00046"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-58604-1_43","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T00:19:13Z","timestamp":1730506753000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-58604-1_43"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030586034","9783030586041"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-58604-1_43","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"3 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Glasgow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OpenReview","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5025","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1360","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}