{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T07:47:19Z","timestamp":1742975239874,"version":"3.40.3"},"publisher-location":"Cham","reference-count":65,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030586034"},{"type":"electronic","value":"9783030586041"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-58604-1_17","type":"book-chapter","created":{"date-parts":[[2020,11,2]],"date-time":"2020-11-02T22:02:49Z","timestamp":1604354569000},"page":"271-289","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":33,"title":["DA4AD: End-to-End Deep Attention-Based Visual Localization for Autonomous Driving"],"prefix":"10.1007","author":[{"given":"Yao","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Guowei","family":"Wan","sequence":"additional","affiliation":[]},{"given":"Shenhua","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Li","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xiaofei","family":"Rui","sequence":"additional","affiliation":[]},{"given":"Shiyu","family":"Song","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,3]]},"reference":[{"key":"17_CR1","unstructured":"Baidu Apollo open platform. http:\/\/apollo.auto\/"},{"key":"17_CR2","doi-asserted-by":"crossref","unstructured":"Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510\u2013517. IEEE (2012)","DOI":"10.1109\/CVPR.2012.6247715"},{"key":"17_CR3","unstructured":"Barsan, I.A., Wang, S., Pokrovsky, A., Urtasun, R.: Learning to localize using a LiDAR intensity map. In: Proceedings of the Conference on Robot Learning (CoRL), pp. 605\u2013616 (2018)"},{"key":"17_CR4","doi-asserted-by":"crossref","unstructured":"Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J.: Geometry-aware learning of maps for camera localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00277"},{"key":"17_CR5","doi-asserted-by":"crossref","unstructured":"B\u00fcrki, M., et al.: VIZARD: reliable visual localization for autonomous vehicles in urban outdoor environments. arXiv preprint arXiv:1902.04343 (2019)","DOI":"10.1109\/IVS.2019.8814017"},{"key":"17_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"778","DOI":"10.1007\/978-3-642-15561-1_56","volume-title":"Computer Vision \u2013 ECCV 2010","author":"M Calonder","year":"2010","unstructured":"Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778\u2013792. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-15561-1_56"},{"issue":"9","key":"17_CR7","doi-asserted-by":"publisher","first-page":"1023","DOI":"10.1177\/0278364915614638","volume":"35","author":"N Carlevaris-Bianco","year":"2015","unstructured":"Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M.: University of Michigan North Campus long-term vision and LiDAR dataset. Int. J. Rob. Res. (IJRR) 35(9), 1023\u20131035 (2015)","journal-title":"Int. J. Rob. Res. (IJRR)"},{"key":"17_CR8","doi-asserted-by":"crossref","unstructured":"Caselitz, T., Steder, B., Ruhnke, M., Burgard, W.: Monocular camera localization in 3D LiDAR maps. In: Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1926\u20131931. IEEE (2016)","DOI":"10.1109\/IROS.2016.7759304"},{"key":"17_CR9","unstructured":"Chen, Y., Wang, G.: EnforceNet: monocular camera localization in large scale indoor sparse LiDAR point cloud. arXiv preprint arXiv:1907.07160 (2019)"},{"key":"17_CR10","doi-asserted-by":"crossref","unstructured":"Cui, D., Xue, J., Du, S., Zheng, N.: Real-time global localization of intelligent road vehicles in lane-level via lane marking detection and shape registration. In: Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4958\u20134964. IEEE (2014)","DOI":"10.1109\/IROS.2014.6943267"},{"issue":"4","key":"17_CR11","doi-asserted-by":"publisher","first-page":"1039","DOI":"10.1109\/TITS.2015.2492019","volume":"17","author":"D Cui","year":"2015","unstructured":"Cui, D., Xue, J., Zheng, N.: Real-time global localization of robotic cars in lane level via lane marking detection and shape registration. IEEE Trans. Intell. Transp. Syst. (T-ITS) 17(4), 1039\u20131050 (2015)","journal-title":"IEEE Trans. Intell. Transp. Syst. (T-ITS)"},{"key":"17_CR12","doi-asserted-by":"crossref","unstructured":"DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2018)","DOI":"10.1109\/CVPRW.2018.00060"},{"key":"17_CR13","doi-asserted-by":"crossref","unstructured":"Dusmanu, Met al.: D2-Net: atrainable CNN for joint description and detection of local features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.00828"},{"issue":"9","key":"17_CR14","doi-asserted-by":"publisher","first-page":"1305","DOI":"10.1109\/83.623193","volume":"6","author":"Y Eldar","year":"1997","unstructured":"Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. (TIP) 6(9), 1305\u20131315 (1997)","journal-title":"IEEE Trans. Image Process. (TIP)"},{"key":"17_CR15","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1145\/358669.358692","volume":"24","author":"MA Fischler","year":"1981","unstructured":"Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381\u2013395 (1981)","journal-title":"Commun. ACM"},{"issue":"11","key":"17_CR16","doi-asserted-by":"publisher","first-page":"1231","DOI":"10.1177\/0278364913491297","volume":"32","author":"A Geiger","year":"2013","unstructured":"Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. (IJRR) 32(11), 1231\u20131237 (2013)","journal-title":"Int. J. Rob. Res. (IJRR)"},{"key":"17_CR17","doi-asserted-by":"crossref","unstructured":"Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354\u20133361. IEEE (2012)","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"17_CR18","doi-asserted-by":"crossref","unstructured":"Germain, H., Bourmaud, G., Lepetit, V.: Sparse-to-dense hypercolumn matching for long-term visual localization. In: Proceedings of the International Conference on 3D Vision (3DV), pp. 513\u2013523. IEEE (2019)","DOI":"10.1109\/3DV.2019.00063"},{"issue":"3","key":"17_CR19","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1007\/BF02028352","volume":"13","author":"BM Haralick","year":"1994","unstructured":"Haralick, B.M., Lee, C.N., Ottenberg, K., N\u00f6lle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. Int. J. Comput. Vis.(IJCV) 13(3), 331\u2013356 (1994)","journal-title":"Int. J. Comput. Vis.(IJCV)"},{"key":"17_CR20","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"17_CR21","doi-asserted-by":"crossref","unstructured":"He, K., Lu, Y., Sclaroff, S.: Local descriptors optimized for average precision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00069"},{"issue":"6","key":"17_CR22","doi-asserted-by":"publisher","first-page":"3377","DOI":"10.1109\/TITS.2015.2450738","volume":"16","author":"K Jo","year":"2015","unstructured":"Jo, K., Jo, Y., Suhr, J.K., Jung, H.G., Sunwoo, M.: Precise localization of an autonomous car based on probabilistic noise models of road surface marker features using multiple cameras. IEEE Trans. Intell. Transp. Syst. 16(6), 3377\u20133392 (2015)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"17_CR23","doi-asserted-by":"publisher","unstructured":"Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2938\u20132946 (2015). https:\/\/doi.org\/10.1109\/ICCV.2015.336","DOI":"10.1109\/ICCV.2015.336"},{"key":"17_CR24","doi-asserted-by":"crossref","unstructured":"Kendall, A., Cipolla, R., et al.: Geometric loss functions for camera pose regression with deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 3, p. 8 (2017)","DOI":"10.1109\/CVPR.2017.694"},{"key":"17_CR25","doi-asserted-by":"crossref","unstructured":"Lategahn, H., Beck, J., Kitt, B., Stiller, C.: How to learn an illumination robust image feature for place recognition. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 285\u2013291. IEEE (2013)","DOI":"10.1109\/IVS.2013.6629483"},{"key":"17_CR26","doi-asserted-by":"crossref","unstructured":"Lategahn, H., Schreiber, M., Ziegler, J., Stiller, C.: Urban localization with camera and inertial measurement unit. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 719\u2013724. IEEE (2013)","DOI":"10.1109\/IVS.2013.6629552"},{"issue":"3","key":"17_CR27","doi-asserted-by":"publisher","first-page":"1246","DOI":"10.1109\/TITS.2014.2298492","volume":"15","author":"H Lategahn","year":"2014","unstructured":"Lategahn, H., Stiller, C.: Vision only localization. IEEE Trans. Intell. Transp. Syst. (T-ITS) 15(3), 1246\u20131257 (2014)","journal-title":"IEEE Trans. Intell. Transp. Syst. (T-ITS)"},{"key":"17_CR28","doi-asserted-by":"crossref","unstructured":"Levinson, J., Montemerlo, M., Thrun, S.: Map-based precision vehicle localization in urban environments. In: Proceedings of the Robotics: Science and Systems (RSS), vol. 4, p. 1 (2007)","DOI":"10.15607\/RSS.2007.III.016"},{"key":"17_CR29","doi-asserted-by":"crossref","unstructured":"Levinson, J., Thrun, S.: Robust vehicle localization in urban environments using probabilistic maps. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 4372\u20134378 (2010)","DOI":"10.1109\/ROBOT.2010.5509700"},{"key":"17_CR30","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117\u20132125 (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"17_CR31","doi-asserted-by":"crossref","unstructured":"Linegar, C., Churchill, W., Newman, P.: Work smart, not hard: recalling relevant experiences for vast-scale but time-constrained localisation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 90\u201397. IEEE (2015)","DOI":"10.1109\/ICRA.2015.7138985"},{"key":"17_CR32","doi-asserted-by":"crossref","unstructured":"Linegar, C., Churchill, W., Newman, P.: Made to measure: bespoke landmarks for 24-hour, all-weather localisation with a camera. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 787\u2013794. IEEE (2016)","DOI":"10.1109\/ICRA.2016.7487208"},{"issue":"2","key":"17_CR33","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Lowe","year":"2004","unstructured":"Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60(2), 91\u2013110 (2004)","journal-title":"Int. J. Comput. Vis. (IJCV)"},{"key":"17_CR34","doi-asserted-by":"crossref","unstructured":"Lu, W., Wan, G., Zhou, Y., Fu, X., Yuan, P., Song, S.: DeepVCP: an end-to-end deep neural network for point cloud registration. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)","DOI":"10.1109\/ICCV.2019.00010"},{"key":"17_CR35","doi-asserted-by":"crossref","unstructured":"Lu, W., Zhou, Y., Wan, G., Hou, S., Song, S.: L3-Net: towards learning based LiDAR localization for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6389\u20136398 (2019)","DOI":"10.1109\/CVPR.2019.00655"},{"key":"17_CR36","unstructured":"Maddern, W., Pascoe, G., Gadd, M., Barnes, D., Yeomans, B., Newman, P.: Real-time kinematic ground truth for the Oxford robotcar dataset. arXiv preprint arXiv:2002.10152 (2020)"},{"issue":"1","key":"17_CR37","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1177\/0278364916679498","volume":"36","author":"W Maddern","year":"2017","unstructured":"Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 year, 1000 km: the Oxford RobotCar dataset. Int. J. Rob. Res. (IJRR) 36(1), 3\u201315 (2017)","journal-title":"Int. J. Rob. Res. (IJRR)"},{"key":"17_CR38","doi-asserted-by":"crossref","unstructured":"Maddern, W., Stewart, A.D., Newman, P.: LAPS-II: 6-DoF day and night visual localisation with prior 3D structure for autonomous road vehicles. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 330\u2013337. IEEE (2014)","DOI":"10.1109\/IVS.2014.6856471"},{"key":"17_CR39","doi-asserted-by":"crossref","unstructured":"Naseer, T., Burgard, W.: Deep regression for monocular camera-based 6-DoF global localization in outdoor environments. In: Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1525\u20131530 (2017)","DOI":"10.1109\/IROS.2017.8205957"},{"key":"17_CR40","doi-asserted-by":"crossref","unstructured":"Neubert, P., Schubert, S., Protzel, P.: Sampling-based methods for visual navigation in 3D maps by synthesizing depth images. In: Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2492\u20132498. IEEE (2017)","DOI":"10.1109\/IROS.2017.8206067"},{"key":"17_CR41","doi-asserted-by":"crossref","unstructured":"Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3456\u20133465 (2017)","DOI":"10.1109\/ICCV.2017.374"},{"issue":"13","key":"17_CR42","doi-asserted-by":"publisher","first-page":"1543","DOI":"10.1177\/0278364911400640","volume":"30","author":"G Pandey","year":"2011","unstructured":"Pandey, G., McBride, J.R., Eustice, R.M.: Ford campus vision and LiDAR data set. Int. J. Rob. Res. (IJRR) 30(13), 1543\u20131552 (2011)","journal-title":"Int. J. Rob. Res. (IJRR)"},{"key":"17_CR43","doi-asserted-by":"crossref","unstructured":"Pascoe, G., Maddern, W., Newman, P.: Direct visual localisation and calibration for road vehicles in changing city environments. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 9\u201316 (2015)","DOI":"10.1109\/ICCVW.2015.23"},{"issue":"4","key":"17_CR44","doi-asserted-by":"publisher","first-page":"4407","DOI":"10.1109\/LRA.2018.2869640","volume":"3","author":"N Radwan","year":"2018","unstructured":"Radwan, N., Valada, A., Burgard, W.: VLocNet++: deep multitask learning for semantic visual localization and odometry. IEEE Rob. Autom. Lett. (RA-L) 3(4), 4407\u20134414 (2018)","journal-title":"IEEE Rob. Autom. Lett. (RA-L)"},{"key":"17_CR45","doi-asserted-by":"crossref","unstructured":"Ranganathan, A., Ilstrup, D., Wu, T.: Light-weight localization for vehicles using road markings. In: Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 921\u2013927. IEEE (2013)","DOI":"10.1109\/IROS.2013.6696460"},{"key":"17_CR46","doi-asserted-by":"crossref","unstructured":"Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.01300"},{"key":"17_CR47","doi-asserted-by":"crossref","unstructured":"Sattler, T., et al.: Benchmarking 6-DoF outdoor visual localization in changing conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8601\u20138610 (2018)","DOI":"10.1109\/CVPR.2018.00897"},{"key":"17_CR48","doi-asserted-by":"crossref","unstructured":"Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations of CNN-Based absolute camera pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.00342"},{"key":"17_CR49","doi-asserted-by":"crossref","unstructured":"Savinov, N., Seki, A., Ladicky, L., Sattler, T., Pollefeys, M.: Quad-networks: unsupervised learning to rank for interest point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)","DOI":"10.1109\/CVPR.2017.418"},{"key":"17_CR50","doi-asserted-by":"crossref","unstructured":"Schreiber, M., Kn\u00f6ppel, C., Franke, U.: Laneloc: lane marking based localization using highly accurate maps. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 449\u2013454. IEEE (2013)","DOI":"10.1109\/IVS.2013.6629509"},{"key":"17_CR51","doi-asserted-by":"crossref","unstructured":"Stewart, A.D., Newman, P.: LAPS-localisation using appearance of prior structure: 6-DOF monocular camera localisation using prior pointclouds. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2625\u20132632. IEEE (2012)","DOI":"10.1109\/ICRA.2012.6224750"},{"issue":"2","key":"17_CR52","doi-asserted-by":"publisher","first-page":"890","DOI":"10.1109\/LRA.2020.2965031","volume":"5","author":"L von Stumberg","year":"2020","unstructured":"von Stumberg, L., Wenzel, P., Khan, Q., Cremers, D.: GN-Net: the Gauss-Newton loss for multi-weather relocalization. IEEE Rob. Autom. Lett. 5(2), 890\u2013897 (2020)","journal-title":"IEEE Rob. Autom. Lett."},{"issue":"5","key":"17_CR53","doi-asserted-by":"publisher","first-page":"1078","DOI":"10.1109\/TITS.2016.2595618","volume":"18","author":"JK Suhr","year":"2016","unstructured":"Suhr, J.K., Jang, J., Min, D., Jung, H.G.: Sensor fusion-based low-cost vehicle localization system for complex urban environments. IEEE Trans. Intell. Transp. Syst. (T-ITS) 18(5), 1078\u20131086 (2016)","journal-title":"IEEE Trans. Intell. Transp. Syst. (T-ITS)"},{"key":"17_CR54","doi-asserted-by":"crossref","unstructured":"Taira, H., et al.: InLoc: indoor visual localization with dense matching and view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00752"},{"key":"17_CR55","doi-asserted-by":"crossref","unstructured":"Toft, C., et al.: Semantic match consistency for long-term visual localization. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)","DOI":"10.1007\/978-3-030-01216-8_24"},{"key":"17_CR56","doi-asserted-by":"publisher","unstructured":"Valada, A., Radwan, N., Burgard, W.: Deep auxiliary learning for visual localization and odometry. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 6939\u20136946 (2018). https:\/\/doi.org\/10.1109\/ICRA.2018.8462979","DOI":"10.1109\/ICRA.2018.8462979"},{"key":"17_CR57","doi-asserted-by":"crossref","unstructured":"Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D.: Image-based localization using LSTMs for structured feature correlation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 627\u2013637 (2017)","DOI":"10.1109\/ICCV.2017.75"},{"key":"17_CR58","doi-asserted-by":"crossref","unstructured":"Wan, G., et al.: Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 4670\u20134677 (2018)","DOI":"10.1109\/ICRA.2018.8461224"},{"key":"17_CR59","doi-asserted-by":"crossref","unstructured":"Wang, P., Yang, R., Cao, B., Xu, W., Lin, Y.: DeLS-3D: deep localization and segmentation with a 3D semantic map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00614"},{"key":"17_CR60","doi-asserted-by":"crossref","unstructured":"Wolcott, R.W., Eustice, R.M.: Visual localization within LiDAR maps for automated urban driving. In: Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 176\u2013183. IEEE (2014)","DOI":"10.1109\/IROS.2014.6942558"},{"key":"17_CR61","doi-asserted-by":"crossref","unstructured":"Wolcott, R.W., Eustice, R.M.: Fast LiDAR localization using multiresolution Gaussian mixture maps. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2814\u20132821 (2015)","DOI":"10.1109\/ICRA.2015.7139582"},{"issue":"3","key":"17_CR62","doi-asserted-by":"publisher","first-page":"292","DOI":"10.1177\/0278364917696568","volume":"36","author":"RW Wolcott","year":"2017","unstructured":"Wolcott, R.W., Eustice, R.M.: Robust LiDAR localization using multiresolution gaussian mixture maps for autonomous driving. Int. J. Rob. Res. (IJRR) 36(3), 292\u2013319 (2017)","journal-title":"Int. J. Rob. Res. (IJRR)"},{"key":"17_CR63","doi-asserted-by":"crossref","unstructured":"Wu, T., Ranganathan, A.: Vehicle localization using road markings. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 1185\u20131190. IEEE (2013)","DOI":"10.1109\/IVS.2013.6629627"},{"key":"17_CR64","doi-asserted-by":"crossref","unstructured":"Yi, K.M.Y., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Proceedings of the European Conference on Computer Vision (ECCV) (2016)","DOI":"10.1007\/978-3-319-46466-4_28"},{"key":"17_CR65","doi-asserted-by":"crossref","unstructured":"Yu, Y., Zhao, H., Davoine, F., Cui, J., Zha, H.: Monocular visual localization using road structural features. In: Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings (IV), pp. 693\u2013699. IEEE (2014)","DOI":"10.1109\/IVS.2014.6856539"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-58604-1_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T00:12:22Z","timestamp":1730506342000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-58604-1_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030586034","9783030586041"],"references-count":65,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-58604-1_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"3 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Glasgow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OpenReview","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5025","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1360","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}