{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T10:58:28Z","timestamp":1743073108354,"version":"3.40.3"},"publisher-location":"Cham","reference-count":49,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030585853"},{"type":"electronic","value":"9783030585860"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-58586-0_24","type":"book-chapter","created":{"date-parts":[[2020,11,29]],"date-time":"2020-11-29T17:02:42Z","timestamp":1606669362000},"page":"395-412","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization"],"prefix":"10.1007","author":[{"given":"Amir","family":"Rahimi","sequence":"first","affiliation":[]},{"given":"Amirreza","family":"Shaban","sequence":"additional","affiliation":[]},{"given":"Thalaiyasingam","family":"Ajanthan","sequence":"additional","affiliation":[]},{"given":"Richard","family":"Hartley","sequence":"additional","affiliation":[]},{"given":"Byron","family":"Boots","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,30]]},"reference":[{"key":"24_CR1","doi-asserted-by":"crossref","unstructured":"Wan, F., Liu, C., Ke, W., Ji, X., Jiao, J., Ye, Q.: C-MIL: continuation multiple instance learning for weakly supervised object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2199\u20132208 (2019)","DOI":"10.1109\/CVPR.2019.00230"},{"key":"24_CR2","doi-asserted-by":"crossref","unstructured":"Gao, J., Wang, J., Dai, S., Li, L.J., Nevatia, R.: NOTE-RCNN: NOise tolerant ensemble RCNN for semi-supervised object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9508\u20139517 (2019)","DOI":"10.1109\/ICCV.2019.00960"},{"key":"24_CR3","doi-asserted-by":"crossref","unstructured":"Arun, A., Jawahar, C., Kumar, M.P.: Dissimilarity coefficient based weakly supervised object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9432\u20139441 (2019)","DOI":"10.1109\/CVPR.2019.00966"},{"key":"24_CR4","doi-asserted-by":"crossref","unstructured":"Uijlings, J., Popov, S., Ferrari, V.: Revisiting knowledge transfer for training object class detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1101\u20131110 (2018)","DOI":"10.1109\/CVPR.2018.00121"},{"issue":"1","key":"24_CR5","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1109\/TPAMI.2016.2535231","volume":"39","author":"RG Cinbis","year":"2016","unstructured":"Cinbis, R.G., Verbeek, J., Schmid, C.: Weakly supervised object localization with multi-fold multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 189\u2013203 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"24_CR6","doi-asserted-by":"crossref","unstructured":"Bilen, H., Pedersoli, M., Tuytelaars, T.: Weakly supervised object detection with posterior regularization. In: British Machine Vision Conference, vol. 3 (2014)","DOI":"10.5244\/C.28.52"},{"key":"24_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"452","DOI":"10.1007\/978-3-642-15561-1_33","volume-title":"Computer Vision \u2013 ECCV 2010","author":"T Deselaers","year":"2010","unstructured":"Deselaers, T., Alexe, B., Ferrari, V.: Localizing objects while learning their appearance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 452\u2013466. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-15561-1_33"},{"key":"24_CR8","doi-asserted-by":"crossref","unstructured":"Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with online instance classifier refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)","DOI":"10.1109\/CVPR.2017.326"},{"issue":"1","key":"24_CR9","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1109\/TPAMI.2018.2876304","volume":"42","author":"P Tang","year":"2018","unstructured":"Tang, P., et al.: PCL: proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 176\u2013191 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"24_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"24_CR11","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779\u2013788 (2016)","DOI":"10.1109\/CVPR.2016.91"},{"key":"24_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-319-46448-0_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Liu","year":"2016","unstructured":"Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21\u201337. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2"},{"key":"24_CR13","unstructured":"Singh, B., Najibi, M., Davis, L.S.: SNIPER: efficient multi-scale training. In: Advances in Neural Information Processing Systems, pp. 9310\u20139320 (2018)"},{"key":"24_CR14","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.324"},{"issue":"1","key":"24_CR15","first-page":"4954","volume":"17","author":"J Hoffman","year":"2016","unstructured":"Hoffman, J., et al.: Large scale visual recognition through adaptation using joint representation and multiple instance learning. J. Mach. Learn. Res. 17(1), 4954\u20134984 (2016)","journal-title":"J. Mach. Learn. Res."},{"key":"24_CR16","unstructured":"Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 577\u2013584 (2003)"},{"key":"24_CR17","doi-asserted-by":"crossref","unstructured":"Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2846\u20132854 (2016)","DOI":"10.1109\/CVPR.2016.311"},{"key":"24_CR18","doi-asserted-by":"crossref","unstructured":"Rochan, M., Wang, Y.: Weakly supervised localization of novel objects using appearance transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4315\u20134324 (2015)","DOI":"10.1109\/CVPR.2015.7299060"},{"key":"24_CR19","doi-asserted-by":"crossref","unstructured":"Tang, K., Joulin, A., Li, L.J., Fei-Fei, L.: Co-localization in real-world images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1464\u20131471 (2014)","DOI":"10.1109\/CVPR.2014.190"},{"key":"24_CR20","doi-asserted-by":"crossref","unstructured":"Guillaumin, M., Ferrari, V.: Large-scale knowledge transfer for object localization in imagenet. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3202\u20133209. IEEE (2012)","DOI":"10.1109\/CVPR.2012.6248055"},{"issue":"3","key":"24_CR21","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1111\/j.2517-6161.1986.tb01412.x","volume":"48","author":"J Besag","year":"1986","unstructured":"Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc.: Ser. B (Methodol.) 48(3), 259\u2013279 (1986)","journal-title":"J. Roy. Stat. Soc.: Ser. B (Methodol.)"},{"key":"24_CR22","doi-asserted-by":"crossref","unstructured":"Shaban, A., Rahimi, A., Bansal, S., Gould, S., Boots, B., Hartley, R.: Learning to find common objects across few image collections. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5117\u20135126 (2019)","DOI":"10.1109\/ICCV.2019.00522"},{"issue":"10","key":"24_CR23","doi-asserted-by":"publisher","first-page":"1568","DOI":"10.1109\/TPAMI.2006.200","volume":"28","author":"V Kolmogorov","year":"2006","unstructured":"Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568\u20131583 (2006)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"24_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"issue":"3","key":"24_CR25","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vis."},{"key":"24_CR26","doi-asserted-by":"crossref","unstructured":"Zhu, Y., Zhou, Y., Ye, Q., Qiu, Q., Jiao, J.: Soft proposal networks for weakly supervised object localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1841\u20131850 (2017)","DOI":"10.1109\/ICCV.2017.204"},{"key":"24_CR27","doi-asserted-by":"crossref","unstructured":"Bilen, H., Pedersoli, M., Tuytelaars, T.: Weakly supervised object detection with convex clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1081\u20131089 (2015)","DOI":"10.1109\/CVPR.2015.7298711"},{"key":"24_CR28","doi-asserted-by":"crossref","unstructured":"Wan, F., Wei, P., Jiao, J., Han, Z., Ye, Q.: Min-entropy latent model for weakly supervised object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1297\u20131306 (2018)","DOI":"10.1109\/CVPR.2018.00141"},{"key":"24_CR29","unstructured":"Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems, pp. 1189\u20131197 (2010)"},{"key":"24_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"330","DOI":"10.1007\/978-3-319-10578-9_22","volume-title":"Computer Vision \u2013 ECCV 2014","author":"Z Hayder","year":"2014","unstructured":"Hayder, Z., Salzmann, M., He, X.: Object co-detection via efficient inference in a fully-connected CRF. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 330\u2013345. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10578-9_22"},{"key":"24_CR31","doi-asserted-by":"crossref","unstructured":"Hayder, Z., He, X., Salzmann, M.: Structural kernel learning for large scale multiclass object co-detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2632\u20132640. IEEE (2015)","DOI":"10.1109\/ICCV.2015.302"},{"key":"24_CR32","volume-title":"Iterative Solution of Nonlinear Equations in Several Variables","author":"JM Ortega","year":"1970","unstructured":"Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, vol. 30. SIAM, Philadelphia (1970)"},{"key":"24_CR33","doi-asserted-by":"crossref","unstructured":"Wainwright, M.J., Jordan, M.I., et al.: Graphical models, exponential families, and variational inference. Found. Trends\u00ae Mach. Learn. 1(1\u20132), 1\u2013305 (2008)","DOI":"10.1561\/2200000001"},{"key":"24_CR34","volume-title":"Theory of Linear and Integer Programming","author":"A Schrijver","year":"1998","unstructured":"Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Hoboken (1998)"},{"key":"24_CR35","doi-asserted-by":"crossref","unstructured":"Savchynskyy, B., et al.: Discrete graphical models\u2013an optimization perspective. Found. Trends\u00ae Comput. Graph. Vis. 11(3\u20134), 160\u2013429 (2019)","DOI":"10.1561\/0600000084"},{"issue":"2","key":"24_CR36","doi-asserted-by":"publisher","first-page":"736","DOI":"10.1109\/18.910585","volume":"47","author":"Y Weiss","year":"2001","unstructured":"Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Trans. Inf. Theory 47(2), 736\u2013744 (2001)","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"1\u20132","key":"24_CR37","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1007\/s11263-009-0209-1","volume":"87","author":"M Bergtholdt","year":"2010","unstructured":"Bergtholdt, M., Kappes, J., Schmidt, S., Schn\u00f6rr, C.: A study of parts-based object class detection using complete graphs. IJCV 87(1\u20132), 93 (2010)","journal-title":"IJCV"},{"key":"24_CR38","unstructured":"Kr\u00e4henb\u00fchl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109\u2013117 (2011)"},{"key":"24_CR39","doi-asserted-by":"publisher","first-page":"753","DOI":"10.1111\/j.1467-8659.2009.01645.x","volume":"29","author":"A Adams","year":"2010","unstructured":"Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the permutohedral lattice. Comput. Graph. Forum 29, 753\u2013762 (2010). Wiley Online Library","journal-title":"Comput. Graph. Forum"},{"key":"24_CR40","doi-asserted-by":"crossref","unstructured":"Ajanthan, T., Desmaison, A., Bunel, R., Salzmann, M., Torr, P.H., Pawan Kumar, M.: Efficient linear programming for dense CRFs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3298\u20133306 (2017)","DOI":"10.1109\/CVPR.2017.313"},{"key":"24_CR41","doi-asserted-by":"publisher","DOI":"10.7551\/mitpress\/8579.001.0001","volume-title":"Markov Random Fields for Vision and Image Processing","author":"A Blake","year":"2011","unstructured":"Blake, A., Kohli, P., Rother, C.: Markov Random Fields for Vision and Image Processing. MIT Press, Cambridge (2011)"},{"key":"24_CR42","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399 (2015)"},{"key":"24_CR43","doi-asserted-by":"crossref","unstructured":"Tang, Y., Wang, J., Gao, B., Dellandr\u00e9a, E., Gaizauskas, R., Chen, L.: Large scale semi-supervised object detection using visual and semantic knowledge transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2119\u20132128 (2016)","DOI":"10.1109\/CVPR.2016.233"},{"key":"24_CR44","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"24_CR45","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1007\/978-3-030-01246-5_24","volume-title":"Computer Vision \u2013 ECCV 2018","author":"A Bansal","year":"2018","unstructured":"Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 397\u2013414. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01246-5_24"},{"key":"24_CR46","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"24_CR47","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)","DOI":"10.1609\/aaai.v31i1.11231"},{"issue":"2","key":"24_CR48","doi-asserted-by":"publisher","first-page":"154","DOI":"10.1007\/s11263-013-0620-5","volume":"104","author":"JR Uijlings","year":"2013","unstructured":"Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154\u2013171 (2013)","journal-title":"Int. J. Comput. Vis."},{"key":"24_CR49","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818\u20132826 (2016)","DOI":"10.1109\/CVPR.2016.308"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-58586-0_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,29]],"date-time":"2024-11-29T00:10:41Z","timestamp":1732839041000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-58586-0_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030585853","9783030585860"],"references-count":49,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-58586-0_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"30 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Glasgow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OpenReview","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5025","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1360","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic. From the ECCV Workshops 249 full papers, 18 short papers, and 21 further contributions were published out of a total of 467 submissions.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}