{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T10:47:31Z","timestamp":1743072451450,"version":"3.40.3"},"publisher-location":"Cham","reference-count":47,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030585389"},{"type":"electronic","value":"9783030585396"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-58539-6_15","type":"book-chapter","created":{"date-parts":[[2020,11,6]],"date-time":"2020-11-06T19:02:46Z","timestamp":1604689366000},"page":"242-258","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["GeLaTO: Generative Latent Textured Objects"],"prefix":"10.1007","author":[{"given":"Ricardo","family":"Martin-Brualla","sequence":"first","affiliation":[]},{"given":"Rohit","family":"Pandey","sequence":"additional","affiliation":[]},{"given":"Sofien","family":"Bouaziz","sequence":"additional","affiliation":[]},{"given":"Matthew","family":"Brown","sequence":"additional","affiliation":[]},{"given":"Dan B.","family":"Goldman","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,7]]},"reference":[{"key":"15_CR1","doi-asserted-by":"publisher","unstructured":"Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), October 2019. https:\/\/doi.org\/10.1109\/iccv.2019.00453","DOI":"10.1109\/iccv.2019.00453"},{"key":"15_CR2","doi-asserted-by":"crossref","unstructured":"Aliev, K.A., Ulyanov, D., Lempitsky, V.: Neural point-based graphics (2019)","DOI":"10.1007\/978-3-030-58542-6_42"},{"key":"15_CR3","unstructured":"Autonomous Robotics and Perception Group: Calibu Camera Calibration Library. http:\/\/github.com\/arpg\/calibu"},{"key":"15_CR4","doi-asserted-by":"crossref","unstructured":"Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187\u2013194 (1999)","DOI":"10.1145\/311535.311556"},{"key":"15_CR5","unstructured":"Bojanowski, P., Joulin, A., Lopez-Pas, D., Szlam, A.: Optimizing the latent space of generative networks. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research (2018)"},{"key":"15_CR6","doi-asserted-by":"crossref","unstructured":"Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No. PR00662), vol. 2, pp. 690\u2013696. IEEE (2000)","DOI":"10.1109\/CVPR.2000.854941"},{"key":"15_CR7","unstructured":"Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical report, arXiv:1512.03012 [cs.GR], Stanford University \u2013 Princeton University \u2013 Toyota Technological Institute at Chicago (2015)"},{"key":"15_CR8","doi-asserted-by":"crossref","unstructured":"Chen, A., et al.: Deep surface light fields. In: Proceedings of the ACM Computer Graphics Interactive Techniques, vol. 1, no. 1, July 2018","DOI":"10.1145\/3203192"},{"key":"15_CR9","doi-asserted-by":"crossref","unstructured":"Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019","DOI":"10.1109\/CVPR.2019.00609"},{"issue":"3","key":"15_CR10","doi-asserted-by":"publisher","first-page":"689","DOI":"10.1145\/882262.882326","volume":"22","author":"X D\u00e9coret","year":"2003","unstructured":"D\u00e9coret, X., Durand, F., Sillion, F.X., Dorsey, J.: Billboard clouds for extreme model simplification. ACM Trans. Graph. 22(3), 689\u2013696 (2003). https:\/\/doi.org\/10.1145\/882262.882326","journal-title":"ACM Trans. Graph."},{"key":"15_CR11","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"15_CR12","unstructured":"Fuhrmann, A., Umlauf, E., Mantler, S.: Extreme model simplification for forest rendering, pp. 57\u201366, January 2005"},{"issue":"8","key":"15_CR13","doi-asserted-by":"publisher","first-page":"1362","DOI":"10.1109\/TPAMI.2009.161","volume":"32","author":"Y Furukawa","year":"2010","unstructured":"Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362\u20131376 (2010)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"15_CR14","unstructured":"Google: AR Core Augmented Faces. https:\/\/developers.google.com\/ar\/develop\/ios\/augmented-faces\/overview"},{"key":"15_CR15","doi-asserted-by":"crossref","unstructured":"Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a papier-M\u00e2ch\u00e9 approach to learning 3D surface generation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00030"},{"key":"15_CR16","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017","DOI":"10.1109\/CVPR.2017.632"},{"key":"15_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"694","DOI":"10.1007\/978-3-319-46475-6_43","volume-title":"Computer Vision \u2013 ECCV 2016","author":"J Johnson","year":"2016","unstructured":"Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694\u2013711. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_43"},{"key":"15_CR18","doi-asserted-by":"crossref","unstructured":"Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: ECCV (2018)","DOI":"10.1007\/978-3-030-01267-0_23"},{"key":"15_CR19","doi-asserted-by":"crossref","unstructured":"Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015","DOI":"10.1109\/CVPR.2015.7298807"},{"key":"15_CR20","doi-asserted-by":"publisher","unstructured":"Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. https:\/\/doi.org\/10.1109\/cvpr.2019.00453","DOI":"10.1109\/cvpr.2019.00453"},{"key":"15_CR21","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"15_CR22","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)"},{"key":"15_CR23","doi-asserted-by":"crossref","unstructured":"Kulkarni, N., Gupta, A., Tulsiani, S.: Canonical surface mapping via geometric cycle consistency. In: The IEEE International Conference on Computer Vision (ICCV), October 2019","DOI":"10.1109\/ICCV.2019.00229"},{"issue":"2","key":"15_CR24","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1109\/TPAMI.2007.1177","volume":"30","author":"A Levin","year":"2008","unstructured":"Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228\u2013242 (2008)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"15_CR25","first-page":"1","volume":"37","author":"L Liu","year":"2018","unstructured":"Liu, L., Chen, N., Ceylan, D., Theobalt, C., Wang, W., Mitra, N.J.: CurveFusion: reconstructing thin structures from RGBD sequences. ACM Trans. Graph. 37(6), 1\u20132 (2018)","journal-title":"ACM Trans. Graph."},{"issue":"4","key":"15_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3197517.3201401","volume":"37","author":"S Lombardi","year":"2018","unstructured":"Lombardi, S., Saragih, J., Simon, T., Sheikh, Y.: Deep appearance models for face rendering. ACM Trans. Graph. 37(4), 1\u20133 (2018)","journal-title":"ACM Trans. Graph."},{"key":"15_CR27","doi-asserted-by":"publisher","unstructured":"Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. 38(4), (2019). https:\/\/doi.org\/10.1145\/3306346.3323020","DOI":"10.1145\/3306346.3323020"},{"key":"15_CR28","doi-asserted-by":"crossref","unstructured":"Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.00459"},{"key":"15_CR29","doi-asserted-by":"crossref","unstructured":"Meshry, M., et al.: Neural rerendering in the wild. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019","DOI":"10.1109\/CVPR.2019.00704"},{"key":"15_CR30","doi-asserted-by":"crossref","unstructured":"Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis (2020)","DOI":"10.1007\/978-3-030-58452-8_24"},{"key":"15_CR31","doi-asserted-by":"crossref","unstructured":"Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: HoloGAN: unsupervised learning of 3D representations from natural images. In: The IEEE International Conference on Computer Vision (ICCV), October 2019","DOI":"10.1109\/ICCV.2019.00768"},{"key":"15_CR32","doi-asserted-by":"crossref","unstructured":"Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 165\u2013174 (2019)","DOI":"10.1109\/CVPR.2019.00025"},{"key":"15_CR33","doi-asserted-by":"crossref","unstructured":"Pittaluga, F., Koppal, S.J., Bing Kang, S., Sinha, S.N.: Revealing scenes by inverting structure from motion reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 145\u2013154 (2019)","DOI":"10.1109\/CVPR.2019.00023"},{"issue":"3","key":"15_CR34","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1023\/B:VISI.0000025798.50602.3a","volume":"59","author":"M Pollefeys","year":"2004","unstructured":"Pollefeys, M., et al.: Visual modeling with a hand-held camera. Int. J. Comput. Vision 59(3), 207\u2013232 (2004)","journal-title":"Int. J. Comput. Vision"},{"issue":"3","key":"15_CR35","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1145\/964965.808606","volume":"18","author":"T Porter","year":"1984","unstructured":"Porter, T., Duff, T.: Compositing digital images. SIGGRAPH Comput. Graph. 18(3), 253\u2013259 (1984)","journal-title":"SIGGRAPH Comput. Graph."},{"key":"15_CR36","doi-asserted-by":"crossref","unstructured":"Rohlf, J., Helman, J.: Iris performer: a high performance multiprocessing toolkit for real-time 3D graphics. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1994 (1994)","DOI":"10.1145\/192161.192262"},{"key":"15_CR37","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"15_CR38","doi-asserted-by":"crossref","unstructured":"Shan, Q., Agarwal, S., Curless, B.: Refractive height fields from single and multiple images. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 286\u2013293, June 2012","DOI":"10.1109\/CVPR.2012.6247687"},{"key":"15_CR39","doi-asserted-by":"crossref","unstructured":"Sitzmann, V., Thies, J., Heide, F., Nie\u00dfner, M., Wetzstein, G., Zollh\u00f6fer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: Proceedings Computer Vision and Pattern Recognition (CVPR). IEEE (2019)","DOI":"10.1109\/CVPR.2019.00254"},{"key":"15_CR40","unstructured":"Sitzmann, V., Zollh\u00f6fer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems, pp. 1119\u20131130 (2019)"},{"key":"15_CR41","unstructured":"Tewari, A., et al.: State of the art on neural rendering. In: Computer Graphics Forum (EG STAR 2020) (2020)"},{"key":"15_CR42","unstructured":"Thies, J., Zollh\u00f6fer, M., Theobalt, C., Stamminger, M., Nie\u00dfner, M.: IGNOR: image-guided neural object rendering. arXiv 2018 (2018)"},{"issue":"4","key":"15_CR43","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3306346.3323035","volume":"38","author":"J Thies","year":"2019","unstructured":"Thies, J., Zollh\u00f6fer, M., Nie\u00dfner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. 38(4), 1\u20132 (2019)","journal-title":"ACM Trans. Graph."},{"key":"15_CR44","doi-asserted-by":"crossref","unstructured":"Tunwattanapong, B., et al.: Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Trans. Graph. 32(4) (2013)","DOI":"10.1145\/2461912.2461944"},{"key":"15_CR45","doi-asserted-by":"crossref","unstructured":"Whelan, T., et al.: Reconstructing scenes with mirror and glass surfaces. ACM Trans. Graph. 37(4) (2018)","DOI":"10.1145\/3197517.3201319"},{"issue":"4","key":"15_CR46","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1109\/MCG.2017.3271458","volume":"37","author":"Q Zhang","year":"2017","unstructured":"Zhang, Q., Guo, Y., Laffont, P., Martin, T., Gross, M.: A virtual try-on system for prescription eyeglasses. IEEE Comput. Graph. Appl. 37(4), 84\u201393 (2017). https:\/\/doi.org\/10.1109\/MCG.2017.3271458","journal-title":"IEEE Comput. Graph. Appl."},{"key":"15_CR47","unstructured":"Zhang, R.: Making convolutional networks shift-invariant again. arXiv preprint arXiv:1904.11486 (2019)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-58539-6_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,6]],"date-time":"2024-11-06T00:10:38Z","timestamp":1730851838000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-58539-6_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030585389","9783030585396"],"references-count":47,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-58539-6_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"7 November 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Glasgow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OpenReview","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5025","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1360","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}