{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T04:22:00Z","timestamp":1728188520348},"publisher-location":"Cham","reference-count":50,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030585259"},{"type":"electronic","value":"9783030585266"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-58526-6_17","type":"book-chapter","created":{"date-parts":[[2020,10,6]],"date-time":"2020-10-06T21:03:07Z","timestamp":1602018187000},"page":"278-294","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Learning to Generate Customized Dynamic 3D Facial Expressions"],"prefix":"10.1007","author":[{"given":"Rolandos Alexandros","family":"Potamias","sequence":"first","affiliation":[]},{"given":"Jiali","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Stylianos","family":"Ploumpis","sequence":"additional","affiliation":[]},{"given":"Giorgos","family":"Bouritsas","sequence":"additional","affiliation":[]},{"given":"Evangelos","family":"Ververas","sequence":"additional","affiliation":[]},{"given":"Stefanos","family":"Zafeiriou","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,10,7]]},"reference":[{"key":"17_CR1","doi-asserted-by":"crossref","unstructured":"Alashkar, T., Ben Amor, B., Daoudi, M., Berretti, S.: A 3D dynamic database for unconstrained face recognition. In: 5th International Conference and Exhibition on 3D Body Scanning Technologies. Lugano, Switzerland, October 2014","DOI":"10.15221\/14.357"},{"key":"17_CR2","doi-asserted-by":"crossref","unstructured":"Amberg, B., Knothe, R., Vetter, T.: Expression invariant 3D face recognition with a morphable model. In: 2008 8th IEEE International Conference on Automatic Face Gesture Recognition, pp. 1\u20136 (2008)","DOI":"10.1109\/AFGR.2008.4813376"},{"key":"17_CR3","unstructured":"Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1993\u20132001 (2016)"},{"key":"17_CR4","unstructured":"Boscaini, D., Masci, J., Rodol\u00e0, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 3189\u20133197 (2016)"},{"issue":"4","key":"17_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2461912.2461976","volume":"32","author":"S Bouaziz","year":"2013","unstructured":"Bouaziz, S., Wang, Y., Pauly, M.: Online modeling for realtime facial animation. ACM Trans. Graph. (ToG) 32(4), 1\u201310 (2013)","journal-title":"ACM Trans. Graph. (ToG)"},{"key":"17_CR6","doi-asserted-by":"crossref","unstructured":"Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3D morphable models: spiral convolutional networks for 3D shape representation learning and generation. In: The IEEE International Conference on Computer Vision (ICCV), October 2019","DOI":"10.1109\/ICCV.2019.00731"},{"issue":"4","key":"17_CR7","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1109\/MSP.2017.2693418","volume":"34","author":"MM Bronstein","year":"2017","unstructured":"Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18\u201342 (2017)","journal-title":"IEEE Signal Process. Mag."},{"key":"17_CR8","unstructured":"Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR2014), CBLS, April 2014 (2014)"},{"issue":"4","key":"17_CR9","first-page":"1","volume":"33","author":"C Cao","year":"2014","unstructured":"Cao, C., Hou, Q., Zhou, K.: Displaced dynamic expression regression for real-time facial tracking and animation. ACM Trans. Graph. (TOG) 33(4), 1\u201310 (2014)","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"17_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1007\/11564386_23","volume-title":"Analysis and Modelling of Faces and Gestures","author":"Y Chang","year":"2005","unstructured":"Chang, Y., Vieira, M., Turk, M., Velho, L.: Automatic 3D facial expression analysis in videos. In: Zhao, W., Gong, S., Tang, X. (eds.) AMFG 2005. LNCS, vol. 3723, pp. 293\u2013307. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/11564386_23"},{"key":"17_CR11","doi-asserted-by":"crossref","unstructured":"Cheng, S., Kotsia, I., Pantic, M., Zafeiriou, S.: 4DFAB: a large scale 4D database for facial expression analysis and biometric applications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5117\u20135126 (2018)","DOI":"10.1109\/CVPR.2018.00537"},{"key":"17_CR12","doi-asserted-by":"crossref","unstructured":"Cosker, D., Krumhuber, E., Hilton, A.: A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling. In: 2011 International Conference on Computer Vision, pp. 2296\u20132303. IEEE (2011)","DOI":"10.1109\/ICCV.2011.6126510"},{"key":"17_CR13","doi-asserted-by":"crossref","unstructured":"Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M.J.: Capture, learning, and synthesis of 3D speaking styles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10101\u201310111 (2019)","DOI":"10.1109\/CVPR.2019.01034"},{"key":"17_CR14","unstructured":"Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844\u20133852 (2016)"},{"key":"17_CR15","doi-asserted-by":"crossref","unstructured":"Fan, L., Huang, W., Gan, C., Huang, J., Gong, B.: Controllable image-to-video translation: a case study on facial expression generation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3510\u20133517 (2019)","DOI":"10.1609\/aaai.v33i01.33013510"},{"issue":"6","key":"17_CR16","doi-asserted-by":"publisher","first-page":"591","DOI":"10.1109\/TMM.2010.2052239","volume":"12","author":"G Fanelli","year":"2010","unstructured":"Fanelli, G., Gall, J., Romsdorfer, H., Weise, T., Van Gool, L.: A 3-D audio-visual corpus of affective communication. IEEE Trans. Multimedia 12(6), 591\u2013598 (2010)","journal-title":"IEEE Trans. Multimedia"},{"key":"17_CR17","doi-asserted-by":"crossref","unstructured":"Fey, M., Eric Lenssen, J., Weichert, F., M\u00fcller, H.: SplineCNN: fast geometric deep learning with continuous B-spline kernels. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018","DOI":"10.1109\/CVPR.2018.00097"},{"key":"17_CR18","doi-asserted-by":"crossref","unstructured":"Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: GANFIT: generative adversarial network fitting for high fidelity 3D face reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155\u20131164 (2019)","DOI":"10.1109\/CVPR.2019.00125"},{"issue":"3","key":"17_CR19","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1007\/s11263-010-0360-8","volume":"90","author":"S Gupta","year":"2010","unstructured":"Gupta, S., Markey, M.K., Bovik, A.C.: Anthropometric 3D face recognition. Int. J. Comput. Vision 90(3), 331\u2013349 (2010)","journal-title":"Int. J. Comput. Vision"},{"key":"17_CR20","unstructured":"Hannun, A., et al.: Deep speech: scaling up end-to-end speech recognition. ArXiv (2014)"},{"issue":"4","key":"17_CR21","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1145\/3072959.3073658","volume":"36","author":"T Karras","year":"2017","unstructured":"Karras, T., Aila, T., Laine, S., Herva, A., Lehtinen, J.: Audio-driven facial animation by joint end-to-end learning of pose and emotion. ACM Trans. Graph. (TOG) 36(4), 94 (2017)","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"17_CR22","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ArXiv (2014)"},{"key":"17_CR23","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)"},{"issue":"1","key":"17_CR24","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1109\/TSP.2018.2879624","volume":"67","author":"R Levie","year":"2018","unstructured":"Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans. Signal Process. 67(1), 97\u2013109 (2018)","journal-title":"IEEE Trans. Signal Process."},{"key":"17_CR25","doi-asserted-by":"crossref","unstructured":"Li, Y., Min, M.R., Shen, D., Carlson, D., Carin, L.: Video generation from text. ArXiv (2017)","DOI":"10.1609\/aaai.v32i1.12233"},{"key":"17_CR26","doi-asserted-by":"crossref","unstructured":"Lim, I., Dielen, A., Campen, M., Kobbelt, L.: A simple approach to intrinsic correspondence learning on unstructured 3D meshes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 349\u2013362 (2018)","DOI":"10.1007\/978-3-030-11015-4_26"},{"key":"17_CR27","doi-asserted-by":"crossref","unstructured":"Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 37\u201345 (2015)","DOI":"10.1109\/ICCVW.2015.112"},{"key":"17_CR28","doi-asserted-by":"crossref","unstructured":"Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNS. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115\u20135124 (2017)","DOI":"10.1109\/CVPR.2017.576"},{"key":"17_CR29","unstructured":"Moreno, A.: GavabDB: a 3D face database. In: Proceedings of 2nd COST275 Workshop on Biometrics on the Internet, 2004, pp. 75\u201380 (2004)"},{"key":"17_CR30","unstructured":"Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807\u2013814 (2010)"},{"key":"17_CR31","unstructured":"Otberdout, N., Daoudi, M., Kacem, A., Ballihi, L., Berretti, S.: Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets. ArXiv (2019)"},{"key":"17_CR32","doi-asserted-by":"publisher","unstructured":"Pham, H.X., Cheung, S., Pavlovic, V.: Speech-driven 3D facial animation with implicit emotional awareness: a deep learning approach. In: 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017, pp. 2328\u20132336. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society, United States (2017). https:\/\/doi.org\/10.1109\/CVPRW.2017.287","DOI":"10.1109\/CVPRW.2017.287"},{"key":"17_CR33","unstructured":"Ploumpis, S., et al.: Towards a complete 3D morphable model of the human head. ArXiv (2019)"},{"key":"17_CR34","doi-asserted-by":"crossref","unstructured":"Ploumpis, S., Wang, H., Pears, N., Smith, W.A., Zafeiriou, S.: Combining 3D morphable models: a large scale face-and-head model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10934\u201310943 (2019)","DOI":"10.1109\/CVPR.2019.01119"},{"key":"17_CR35","doi-asserted-by":"crossref","unstructured":"Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 704\u2013720 (2018)","DOI":"10.1007\/978-3-030-01219-9_43"},{"key":"17_CR36","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/978-3-540-89991-4_6","volume-title":"Biometrics and Identity Management","author":"A Savran","year":"2008","unstructured":"Savran, A., et al.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 47\u201356. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-89991-4_6"},{"issue":"3","key":"17_CR37","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1109\/MSP.2012.2235192","volume":"30","author":"DI Shuman","year":"2013","unstructured":"Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83\u201398 (2013)","journal-title":"IEEE Signal Process. Mag."},{"key":"17_CR38","doi-asserted-by":"crossref","unstructured":"Stratou, G., Ghosh, A., Debevec, P., Morency, L.P.: Effect of illumination on automatic expression recognition: a novel 3D relightable facial database. In: Face and Gesture 2011, pp. 611\u2013618. IEEE (2011)","DOI":"10.1109\/FG.2011.5771467"},{"issue":"6","key":"17_CR39","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1145\/2816795.2818056","volume":"34","author":"J Thies","year":"2015","unstructured":"Thies, J., Zollh\u00f6fer, M., Nie\u00dfner, M., Valgaerts, L., Stamminger, M., Theobalt, C.: Real-time expression transfer for facial reenactment. ACM Trans. Graph. 34(6), 183\u20131 (2015)","journal-title":"ACM Trans. Graph."},{"key":"17_CR40","doi-asserted-by":"crossref","unstructured":"Tian, G., Yuan, Y., Liu, Y.: Audio2Face: generating speech\/face animation from single audio with attention-based bidirectional LSTM networks. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 366\u2013371. IEEE (2019)","DOI":"10.1109\/ICMEW.2019.00069"},{"key":"17_CR41","doi-asserted-by":"crossref","unstructured":"Tzirakis, P., Papaioannou, A., Lattas, A., Tarasiou, M., Schuller, B.W., Zafeiriou, S.: Synthesising 3D facial motion from \u201cIn-the-Wild\u201d speech. CoRR (2019)","DOI":"10.1109\/FG47880.2020.00100"},{"key":"17_CR42","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Li\u00f2, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)"},{"key":"17_CR43","doi-asserted-by":"crossref","unstructured":"Verma, N., Boyer, E., Verbeek, J.: FeaStNet: feature-steered graph convolutions for 3D shape analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2598\u20132606 (2018)","DOI":"10.1109\/CVPR.2018.00275"},{"key":"17_CR44","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1007\/s11042-007-0184-x","volume":"40","author":"CK Yang","year":"2008","unstructured":"Yang, C.K., Chiang, W.T.: An interactive facial expression generation system. Multimedia Tools Appl. 40, 41\u201360 (2008)","journal-title":"Multimedia Tools Appl."},{"key":"17_CR45","doi-asserted-by":"publisher","unstructured":"Yang, F., Wang, J., Shechtman, E., Bourdev, L., Metaxas, D.: Expression flow for 3D-aware face component transfer. In: ACM SIGGRAPH 2011 Papers. SIGGRAPH 2011. Association for Computing Machinery, New York (2011). https:\/\/doi.org\/10.1145\/1964921.1964955","DOI":"10.1145\/1964921.1964955"},{"key":"17_CR46","doi-asserted-by":"crossref","unstructured":"Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3D dynamic facial expression database. In: 2008 8th IEEE International Conference on Automatic Face Gesture Recognition, pp. 1\u20136 (2008)","DOI":"10.1109\/AFGR.2008.4813324"},{"key":"17_CR47","doi-asserted-by":"crossref","unstructured":"Zhang, X., et al.: A high-resolution spontaneous 3D dynamic facial expression database. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1\u20136. IEEE (2013)","DOI":"10.1109\/FG.2013.6553788"},{"key":"17_CR48","doi-asserted-by":"crossref","unstructured":"Zhang, Z., et al.: Multimodal spontaneous emotion corpus for human behavior analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3438\u20133446 (2016)","DOI":"10.1109\/CVPR.2016.374"},{"key":"17_CR49","doi-asserted-by":"crossref","unstructured":"Zhong, C., Sun, Z., Tan, T.: Robust 3D face recognition using learned visual codebook. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20136. IEEE (2007)","DOI":"10.1109\/CVPR.2007.383279"},{"key":"17_CR50","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Shi, B.E.: Photorealistic facial expression synthesis by the conditional difference adversarial autoencoder. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 370\u2013376. IEEE (2017)","DOI":"10.1109\/ACII.2017.8273626"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-58526-6_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T00:14:59Z","timestamp":1728173699000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-58526-6_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030585259","9783030585266"],"references-count":50,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-58526-6_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"7 October 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Glasgow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OpenReview","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5025","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1360","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic. From the ECCV Workshops 249 full papers, 18 short papers, and 21 further contributions were published out of a total of 467 submissions.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}