{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T22:34:32Z","timestamp":1726094072438},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030578015"},{"type":"electronic","value":"9783030578022"}],"license":[{"start":{"date-parts":[[2020,8,29]],"date-time":"2020-08-29T00:00:00Z","timestamp":1598659200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,8,29]],"date-time":"2020-08-29T00:00:00Z","timestamp":1598659200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-57802-2_66","type":"book-chapter","created":{"date-parts":[[2020,8,28]],"date-time":"2020-08-28T07:05:27Z","timestamp":1598598327000},"page":"691-701","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Multivariate Approach to Time Series Forecasting of Copper Prices with the Help of Multiple Imputation by Chained Equations and Multivariate Adaptive Regression Splines"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7052-2811","authenticated-orcid":false,"given":"Fernando","family":"S\u00e1nchez Lasheras","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9548-7322","authenticated-orcid":false,"given":"Javier","family":"Gracia Rodr\u00edguez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8880-6348","authenticated-orcid":false,"given":"Paulino Jos\u00e9","family":"Garc\u00eda Nieto","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3194-4448","authenticated-orcid":false,"given":"Esperanza","family":"Garc\u00eda-Gonzalo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7106-5747","authenticated-orcid":false,"given":"Gregorio","family":"Fidalgo Valverde","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,29]]},"reference":[{"key":"66_CR1","unstructured":"Iglesias Garc\u00eda, C., S\u00e1iz Martinez, P., Garc\u00eda-Portilla Gonz\u00e1lez, M.P., Bouso\u00f1o Garc\u00eda, M., Jim\u00e9nez Trevi\u00f1o, L., S\u00e1nchez Lasheras, F., Bobes, J.: Effects of the economic crisis on demand due to mental disorders in Asturias: data from the Asturias Cumulative Psychiatric Case Register (2000\u20132010). Actas Esp. Psiquiatr. 42, 108\u201315 (2014)"},{"key":"66_CR2","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.resourpol.2015.03.004","volume":"45","author":"F S\u00e1nchez Lasheras","year":"2015","unstructured":"S\u00e1nchez Lasheras, F., de Cos Juez, F.J., Su\u00e1rez S\u00e1nchez, A., Krzemien, A., Riesgo Fern\u00e1ndez, P.: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models. Resour. Policy 45, 37\u201343 (2015)","journal-title":"Resour. Policy"},{"key":"66_CR3","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.resourpol.2007.04.001","volume":"32","author":"JE Tilton","year":"2007","unstructured":"Tilton, J.E., Lagos, G.: Assessing the long-run availability of copper. Resour. Policy 32, 19\u201323 (2007)","journal-title":"Resour. Policy"},{"key":"66_CR4","doi-asserted-by":"publisher","first-page":"613","DOI":"10.1016\/j.resourpol.2013.09.007","volume":"38","author":"W Ma","year":"2013","unstructured":"Ma, W., Zhu, X., Wang, M.: Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm. Resour. Policy 38, 613\u2013620 (2013)","journal-title":"Resour. Policy"},{"key":"66_CR5","unstructured":"Riesgo Garc\u00eda, M.V., Krzemie\u0144, A., Manzanedo del Campo, M.\u00c1., Escanciano Garc\u00eda-Miranda, C., S\u00e1nchez Lasheras, F.: Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models. Resour. Policy 59, 95\u2013102 (2018)"},{"key":"66_CR6","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1016\/j.jsm.2016.04.002","volume":"14","author":"A Krzemie\u0144","year":"2015","unstructured":"Krzemie\u0144, A., Riesgo Fern\u00e1ndez, P., Su\u00e1rez S\u00e1nchez, A., S\u00e1nchez Lasheras, F.: Forecasting European thermal coal spot prices. J. Sustain. Min. 14, 203\u2013210 (2015)","journal-title":"J. Sustain. Min."},{"key":"66_CR7","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1016\/j.resourpol.2015.10.003","volume":"46","author":"A Su\u00e1rez S\u00e1nchez","year":"2015","unstructured":"Su\u00e1rez S\u00e1nchez, A., Krzemie\u0144, A., Riesgo Fern\u00e1ndez, P., Iglesias Rodr\u00edguez, F.J., S\u00e1nchez Lasheras, F., de Cos Juez, F.J.: Investment in new tungsten mining projects. Resour. Policy 46, 177\u2013190 (2015)","journal-title":"Resour. Policy"},{"key":"66_CR8","doi-asserted-by":"publisher","first-page":"208","DOI":"10.1016\/j.resourpol.2005.08.007","volume":"30","author":"G Dooley","year":"2005","unstructured":"Dooley, G., Lenihan, H.: An assessment of time series methods in metal price forecasting. Resour. Policy 30, 208\u2013217 (2005)","journal-title":"Resour. Policy"},{"key":"66_CR9","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1016\/j.resourpol.2013.10.005","volume":"39","author":"T Kriechbaumer","year":"2014","unstructured":"Kriechbaumer, T., Angus, A., Parsons, D., Rivas Casado, M.: An improved wavelet\u2013ARIMA approach for forecasting metal prices. Resour. Policy 39, 32\u201341 (2014)","journal-title":"Resour. Policy"},{"key":"66_CR10","doi-asserted-by":"publisher","first-page":"479","DOI":"10.1016\/j.eswa.2009.05.044","volume":"37","author":"M Khashei","year":"2010","unstructured":"Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 37, 479\u2013489 (2010)","journal-title":"Expert Syst. Appl."},{"key":"66_CR11","unstructured":"World Bank Data. \nhttps:\/\/www.worldbank.org\/en\/research\/commodity-markets\n\n Accessed 2 Jan 2020"},{"issue":"1","key":"66_CR12","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1002\/mpr.329","volume":"20","author":"MJ Azur","year":"2011","unstructured":"Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J.: Multiple imputation by chained equations: what is it and how does it work? Int. J. Meth. Psy. Res. 20(1), 40\u201349 (2011)","journal-title":"Int. J. Meth. Psy. Res."},{"key":"66_CR13","doi-asserted-by":"crossref","unstructured":"van Buuren, S., Groothuis-Oudshoorn, K.: mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45(i03) (2011)","DOI":"10.18637\/jss.v045.i03"},{"key":"66_CR14","doi-asserted-by":"publisher","first-page":"31069","DOI":"10.3390\/s151229842","volume":"15","author":"C Crespo Turrado","year":"2015","unstructured":"Crespo Turrado, C., S\u00e1nchez Lasheras, F., Calvo-Roll\u00e9, J.L., Pi\u00f1\u00f3n-Pazos, A.J., de Cos Juez, F.J.: A new missing data imputation algorithm applied to electrical data loggers. Sensors 15, 31069\u201331082 (2015)","journal-title":"Sensors"},{"key":"66_CR15","first-page":"952","volume":"206","author":"FJ de Cos Juez","year":"2008","unstructured":"de Cos Juez, F.J., S\u00e1nchez Lasheras, F., Garc\u00eda Nieto, P.J., \u00c1lvarez-Arenal, A.: Non-linear numerical analysis of a double-threaded titanium alloy dental implant by FEM. Appl. Math. Comput. 206, 952\u2013967 (2008)","journal-title":"Appl. Math. Comput."},{"key":"66_CR16","unstructured":"Ord\u00f3\u00f1ez Gal\u00e1n. C., S\u00e1nchez Lasheras, F., de Cos Juez, F. J., Bernardo S\u00e1nchez, A.: Missing data imputation of questionnaires by means of genetic algorithms with different fitness functions. J. Comput. Appl. Math. 311, 704\u2013717 (2017)"},{"key":"66_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1214\/aos\/1176347963","volume":"19","author":"JH Friedman","year":"1991","unstructured":"Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1\u2013141 (1991)","journal-title":"Ann. Stat."},{"key":"66_CR18","first-page":"351","volume":"10","author":"J de Andr\u00e9s","year":"2011","unstructured":"de Andr\u00e9s, J., S\u00e1nchez-Lasheras, F., Lorca, P., de Cos Juez, F.J.: A hybrid device of self organizing maps (som) and multivariate adaptive regression splines (mars) for the forecasting of firms\u2019 bankruptcy. J. Account. Manag. Inf. Syst. 10, 351\u2013374 (2011)","journal-title":"J. Account. Manag. Inf. Syst."},{"key":"66_CR19","doi-asserted-by":"publisher","first-page":"414","DOI":"10.1016\/j.jhazmat.2011.08.061","volume":"195","author":"PJ Garcia Nieto","year":"2011","unstructured":"Garcia Nieto, P.J., S\u00e1nchez Lasheras, F., de Cos Juez, F.J., Alonso Fern\u00e1ndez, J.R.: Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive regression splines in Trasona reservoir (Northern Spain). J. Hazard. Mater. 195, 414\u2013421 (2011)","journal-title":"J. Hazard. Mater."},{"key":"66_CR20","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1002\/cem.1180060405","volume":"6","author":"S Sekulic","year":"1992","unstructured":"Sekulic, S., Kowalski, B.R.: MARS: a tutorial. J. Chemometr. 6, 199\u2013216 (1992)","journal-title":"J. Chemometr."},{"key":"66_CR21","doi-asserted-by":"publisher","first-page":"753","DOI":"10.1016\/j.scitotenv.2017.11.291","volume":"621","author":"PJ Garc\u00eda Nieto","year":"2018","unstructured":"Garc\u00eda Nieto, P.J., S\u00e1nchez Lasheras, F., Garc\u00eda-Gonzalo, E., de Cos Juez, F.J.: PM10 concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using models based on SVM, MLP, VARMA and ARIMA: a case study. Sci. Total Environ. 621, 753\u2013761 (2018)","journal-title":"Sci. Total Environ."},{"key":"66_CR22","doi-asserted-by":"publisher","first-page":"8895","DOI":"10.3390\/s120708895","volume":"12","author":"FJ de Cos Juez","year":"2012","unstructured":"de Cos Juez, F.J., Lasheras, F.S., Roque\u00f1\u00ed, N., Osborn, J.: An ANN-based smart tomographic reconstructor in a dynamic environment. Sensors 12, 8895\u20138911 (2012)","journal-title":"Sensors"},{"key":"66_CR23","doi-asserted-by":"publisher","first-page":"777","DOI":"10.1016\/j.energy.2018.12.179","volume":"170","author":"A Krzemie\u0144","year":"2019","unstructured":"Krzemie\u0144, A.: Fire risk prevention in underground coal gasification (UCG) within active mines: temperature forecast by means of MARS models. Energy 170, 777\u2013790 (2019)","journal-title":"Energy"},{"issue":"1","key":"66_CR24","first-page":"3","volume":"64","author":"A Krzemie\u0144","year":"2019","unstructured":"Krzemie\u0144, A.: Dynamic fire risk prevention strategy in underground coal gasification processes by means of artificial neural networks. Arch. Min. Sci. 64(1), 3\u201319 (2019)","journal-title":"Arch. Min. Sci."},{"key":"66_CR25","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1016\/j.ijforecast.2006.03.001","volume":"22","author":"RJ Hyndman","year":"2006","unstructured":"Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecasting. 22, 679\u2013688 (2006)","journal-title":"Int. J. Forecasting."},{"key":"66_CR26","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.cam.2018.07.008","volume":"346","author":"C Ord\u00f3\u00f1ez Galan","year":"2019","unstructured":"Ord\u00f3\u00f1ez Galan, C., S\u00e1nchez Lasheras, F., Roca Pardi\u00f1a, J., de Cos Juez, F.J.: A hybrid ARIMA-SVM model for the study of the remaning useful life of aircraft engines. J. Comput. Appl. Math. 346, 184\u2013191 (2019)","journal-title":"J. Comput. Appl. Math."}],"container-title":["Advances in Intelligent Systems and Computing","15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020)"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-57802-2_66","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,8,28]],"date-time":"2020-08-28T07:22:11Z","timestamp":1598599331000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-57802-2_66"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,29]]},"ISBN":["9783030578015","9783030578022"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-57802-2_66","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2020,8,29]]},"assertion":[{"value":"29 August 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SOCO","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Soft Computing Models in Industrial and Environmental Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Burgos","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"socomoin2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2020.sococonference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}