{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T22:20:50Z","timestamp":1726093250235},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030551292"},{"type":"electronic","value":"9783030551308"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-55130-8_4","type":"book-chapter","created":{"date-parts":[[2020,8,19]],"date-time":"2020-08-19T19:09:18Z","timestamp":1597864158000},"page":"40-52","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Knowledge Graphs Meet Geometry for Semi-supervised Monocular Depth Estimation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1730-4305","authenticated-orcid":false,"given":"Yu","family":"Zhao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5476-0177","authenticated-orcid":false,"given":"Fusheng","family":"Jin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5236-1527","authenticated-orcid":false,"given":"Mengyuan","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5326-7209","authenticated-orcid":false,"given":"Shuliang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,20]]},"reference":[{"key":"4_CR1","doi-asserted-by":"crossref","unstructured":"Brazil, G., Yin, X., Liu, X.: Illuminating pedestrians via simultaneous detection & segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4950\u20134959 (2017)","DOI":"10.1109\/ICCV.2017.530"},{"key":"4_CR2","doi-asserted-by":"crossref","unstructured":"Chen, L.C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLab: instance segmentation by refining object detection with semantic and direction features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4013\u20134022 (2018)","DOI":"10.1109\/CVPR.2018.00422"},{"key":"4_CR3","doi-asserted-by":"crossref","unstructured":"Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Computer Vision and Pattern Recognition, pp. 3213\u20133223 (2016)","DOI":"10.1109\/CVPR.2016.350"},{"key":"4_CR4","unstructured":"Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366\u20132374 (2014)"},{"key":"4_CR5","doi-asserted-by":"crossref","unstructured":"Fang, Y., Kuan, K., Lin, J., Tan, C., Chandrasekhar, V.: Object detection meets knowledge graphs. In: International Joint Conference on Artificial Intelligence (2017)","DOI":"10.24963\/ijcai.2017\/230"},{"key":"4_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-46484-8_45","volume-title":"Computer Vision \u2013 ECCV 2016","author":"R Garg","year":"2016","unstructured":"Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740\u2013756. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_45"},{"key":"4_CR7","doi-asserted-by":"crossref","unstructured":"Geiger, A.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"4_CR8","doi-asserted-by":"crossref","unstructured":"Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Computer Vision and Pattern Recognition, pp. 6602\u20136611 (2017)","DOI":"10.1109\/CVPR.2017.699"},{"key":"4_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1007\/978-3-319-10584-0_20","volume-title":"Computer Vision \u2013 ECCV 2014","author":"B Hariharan","year":"2014","unstructured":"Hariharan, B., Arbel\u00e1ez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297\u2013312. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10584-0_20"},{"key":"4_CR10","doi-asserted-by":"crossref","unstructured":"Huang, J., et al.: Speed\/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310\u20137311 (2017)","DOI":"10.1109\/CVPR.2017.351"},{"key":"4_CR11","doi-asserted-by":"crossref","unstructured":"Lee, C.W., Fang, W., Yeh, C.K., Frank Wang, Y.C.: Multi-label zero-shot learning with structured knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1576\u20131585 (2018)","DOI":"10.1109\/CVPR.2018.00170"},{"issue":"10","key":"4_CR12","doi-asserted-by":"publisher","first-page":"2024","DOI":"10.1109\/TPAMI.2015.2505283","volume":"38","author":"F Liu","year":"2016","unstructured":"Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2024\u20132039 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"4_CR13","doi-asserted-by":"crossref","unstructured":"Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In: Computer Vision and Pattern Recognition, pp. 5667\u20135675 (2018)","DOI":"10.1109\/CVPR.2018.00594"},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Computer Vision and Pattern Recognition, pp. 4040\u20134048 (2016)","DOI":"10.1109\/CVPR.2016.438"},{"issue":"5","key":"4_CR15","doi-asserted-by":"publisher","first-page":"1147","DOI":"10.1109\/TRO.2015.2463671","volume":"31","author":"R Murartal","year":"2015","unstructured":"Murartal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147\u20131163 (2015)","journal-title":"IEEE Trans. Robot."},{"key":"4_CR16","doi-asserted-by":"publisher","unstructured":"Ramirez, P.Z., Poggi, M., Tosi, F., Mattoccia, S., Di Stefano, L.: Geometry meets semantics for semi-supervised monocular depth estimation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 298\u2013313. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-20893-6_19","DOI":"10.1007\/978-3-030-20893-6_19"},{"key":"4_CR17","doi-asserted-by":"crossref","unstructured":"Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: Computer Vision and Pattern Recognition, pp. 6565\u20136574 (2017)","DOI":"10.1109\/CVPR.2017.695"},{"key":"4_CR18","doi-asserted-by":"crossref","unstructured":"Wang, P., Huang, X., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The ApolloScape open dataset for autonomous driving and its application. IEEE Trans. Pattern Anal. Mach. Intell. (2019)","DOI":"10.1109\/CVPRW.2018.00141"},{"key":"4_CR19","doi-asserted-by":"crossref","unstructured":"Wang, X., Wang, S., Xin, Y., Yang, Y., Li, J., Wang, X.: Distributed Pregel-based provenance-aware regular path query processing on RDF knowledge graphs. World Wide Web, 1\u201332 (2019)","DOI":"10.1007\/s11280-019-00739-0"},{"issue":"4","key":"4_CR20","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."},{"issue":"9","key":"4_CR21","doi-asserted-by":"publisher","first-page":"1731","DOI":"10.1109\/TPAMI.2011.208","volume":"34","author":"Y Yang","year":"2011","unstructured":"Yang, Y., Hallman, S., Ramanan, D., Fowlkes, C.C.: Layered object models for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1731\u20131743 (2011)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"4_CR22","doi-asserted-by":"crossref","unstructured":"Liu, Z., Jiang, Z., Feng, W., Feng, H.: OD-GCN: object detection boosted by knowledge GCN. arXiv:\u00a0Computer Vision and Pattern Recognition (2019)","DOI":"10.1109\/ICMEW46912.2020.9105952"},{"key":"4_CR23","doi-asserted-by":"crossref","unstructured":"Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Computer Vision and Pattern Recognition, pp. 6612\u20136619 (2017)","DOI":"10.1109\/CVPR.2017.700"}],"container-title":["Lecture Notes in Computer Science","Knowledge Science, Engineering and Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-55130-8_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T14:10:12Z","timestamp":1710252612000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-55130-8_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030551292","9783030551308"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-55130-8_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"20 August 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KSEM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Knowledge Science, Engineering and Management","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ksem2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ksem2020.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"291","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"58","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"20% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}