{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T03:36:20Z","timestamp":1742960180908,"version":"3.40.3"},"publisher-location":"Cham","reference-count":16,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030522452"},{"type":"electronic","value":"9783030522469"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-52246-9_17","type":"book-chapter","created":{"date-parts":[[2020,7,3]],"date-time":"2020-07-03T11:03:49Z","timestamp":1593774229000},"page":"245-263","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Reduced Order Modeling Assisted by Convolutional Neural Network for Thermal Problems with Nonparametrized Geometrical Variability"],"prefix":"10.1007","author":[{"given":"Fabien","family":"Casenave","sequence":"first","affiliation":[]},{"given":"Nissrine","family":"Akkari","sequence":"additional","affiliation":[]},{"given":"David","family":"Ryckelynck","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,7,4]]},"reference":[{"key":"17_CR1","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1016\/j.cma.2018.09.035","volume":"344","author":"J Ayensa-Jim\u00e9nez","year":"2019","unstructured":"Ayensa-Jim\u00e9nez, J., Doweidar, M.H., Sanz-Herrera, J.A., Doblar\u00e9, M.: An unsupervised data completion method for physically-based data-driven models. Comput. Methods Appl. Mech. Eng. 344, 120\u2013143 (2019)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"17_CR2","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1002\/nme.6187","volume":"121","author":"F Casenave","year":"2020","unstructured":"Casenave, F., Akkari, N., Bordeu, F., Rey, C., Ryckelynck, D.: A nonintrusive distributed reduced order modeling framework for nonlinear structural mechanics - application to elastoviscoplastic computations. Int. J. Numer. Methods Eng. 121, 32\u201353 (2020)","journal-title":"Int. J. Numer. Methods Eng."},{"issue":"7","key":"17_CR3","first-page":"808","volume":"78","author":"A Chatterjee","year":"2000","unstructured":"Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808\u2013817 (2000)","journal-title":"Curr. Sci."},{"key":"17_CR4","unstructured":"Chollet, F., et al.: Keras (2015). \nhttps:\/\/github.com\/fchollet\/keras"},{"issue":"11","key":"17_CR5","doi-asserted-by":"publisher","first-page":"784","DOI":"10.1016\/j.compstruc.2007.01.013","volume":"85","author":"A de Boer","year":"2007","unstructured":"de Boer, A., van der Schoot, M.S., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85(11), 784\u2013795 (2007). Fourth MIT Conference on Computational Fluid and Solid Mechanics","journal-title":"Comput. Struct."},{"issue":"9","key":"17_CR6","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1002\/nme.4668","volume":"98","author":"C Farhat","year":"2014","unstructured":"Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Methods Eng. 98(9), 625\u2013662 (2014)","journal-title":"Int. J. Numer. Methods Eng."},{"key":"17_CR7","doi-asserted-by":"publisher","first-page":"250","DOI":"10.1016\/j.cma.2019.01.024","volume":"348","author":"BA Freno","year":"2019","unstructured":"Freno, B.A., Carlberg, K.T.: Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations. Comput. Methods Appl. Mech. Eng. 348, 250\u2013296 (2019)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"17_CR8","doi-asserted-by":"publisher","first-page":"687","DOI":"10.1016\/j.cma.2016.10.022","volume":"313","author":"JA Hern\u00e1ndez","year":"2017","unstructured":"Hern\u00e1ndez, J.A., Caicedo, M.A., Ferrer, A.: Dimensional hyper-reduction of nonlinear finite element models via empirical cubature. Comput. Methods Appl. Mech. Eng. 313, 687\u2013722 (2017)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"17_CR9","doi-asserted-by":"publisher","first-page":"112623","DOI":"10.1016\/j.cma.2019.112623","volume":"358","author":"G Kissas","year":"2020","unstructured":"Kissas, G., Yang, Y., Hwuang, E., Witschey, W.R., Detre, J.A., Perdikaris, P.: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"issue":"1","key":"17_CR10","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1186\/s40323-015-0027-7","volume":"2","author":"D Ryckelynck","year":"2015","unstructured":"Ryckelynck, D., Gallimard, L., Jules, S.: Estimation of the validity domain of hyper-reduction approximations in generalized standard elastoviscoplasticity. Adv. Model. Simul. Eng. Sci. 2(1), 19 (2015)","journal-title":"Adv. Model. Simul. Eng. Sci."},{"key":"17_CR11","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1016\/j.eswa.2018.08.041","volume":"115","author":"SM Salaken","year":"2019","unstructured":"Salaken, S.M., Khosravi, A., Nguyen, T., Nahavandi, S.: Seeded transfer learning for regression problems with deep learning. Expert Syst. Appl. 115, 565\u2013577 (2019)","journal-title":"Expert Syst. Appl."},{"key":"17_CR12","doi-asserted-by":"publisher","first-page":"561","DOI":"10.1090\/qam\/910462","volume":"XLV","author":"L Sirovich","year":"1987","unstructured":"Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I, II and III. Q. Appl. Math. XLV, 561\u2013590 (1987)","journal-title":"Q. Appl. Math."},{"key":"17_CR13","doi-asserted-by":"publisher","first-page":"513","DOI":"10.1016\/j.cma.2019.06.018","volume":"355","author":"D Xiao","year":"2019","unstructured":"Xiao, D.: Error estimation of the parametric non-intrusive reduced order model using machine learning. Comput. Methods Appl. Mech. Eng. 355, 513\u2013534 (2019)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"issue":"9","key":"17_CR14","doi-asserted-by":"publisher","first-page":"1229","DOI":"10.1109\/LSP.2015.2393637","volume":"22","author":"M Yaghoobi","year":"2015","unstructured":"Yaghoobi, M., Wu, D., Davies, M.E.: Fast non-negative orthogonal matching pursuit. IEEE Sig. Process. Lett. 22(9), 1229\u20131233 (2015)","journal-title":"IEEE Sig. Process. Lett."},{"key":"17_CR15","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1016\/j.neucom.2019.08.078","volume":"369","author":"Y Zhu","year":"2019","unstructured":"Zhu, Y., Wu, X., Li, P., Zhang, Y., Hu, X.: Transfer learning with deep manifold regularized auto-encoders. Neurocomputing 369, 145\u2013154 (2019)","journal-title":"Neurocomputing"},{"key":"17_CR16","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.jcp.2019.05.024","volume":"394","author":"Y Zhu","year":"2019","unstructured":"Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56\u201381 (2019)","journal-title":"J. Comput. Phys."}],"container-title":["Advances in Intelligent Systems and Computing","Intelligent Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-52246-9_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,7,3]],"date-time":"2020-07-03T23:41:33Z","timestamp":1593819693000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-52246-9_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030522452","9783030522469"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-52246-9_17","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"4 July 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Science and Information Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"London","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 July 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 July 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sai2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/saiconference.com\/Computing","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}