{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:37:50Z","timestamp":1726087070849},"publisher-location":"Cham","reference-count":34,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030504229"},{"type":"electronic","value":"9783030504236"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-50423-6_30","type":"book-chapter","created":{"date-parts":[[2020,6,19]],"date-time":"2020-06-19T10:03:01Z","timestamp":1592560981000},"page":"406-417","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Universal Measure for Medical Image Quality Evaluation Based on Gradient Approach"],"prefix":"10.1007","author":[{"given":"Marzena","family":"Bielecka","sequence":"first","affiliation":[]},{"given":"Andrzej","family":"Bielecki","sequence":"additional","affiliation":[]},{"given":"Rafa\u0142","family":"Obuchowicz","sequence":"additional","affiliation":[]},{"given":"Adam","family":"Pi\u00f3rkowski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,6,15]]},"reference":[{"key":"30_CR1","doi-asserted-by":"publisher","first-page":"368","DOI":"10.1016\/j.asoc.2018.04.038","volume":"69","author":"M Bielecka","year":"2018","unstructured":"Bielecka, M.: Syntactic-geometric-fuzzy hierarchical classifier of contours with application to analysis of bone contours in X-ray images. Appl. Soft Comput. 69, 368\u2013380 (2018)","journal-title":"Appl. Soft Comput."},{"key":"30_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1007\/978-3-642-20267-4_16","volume-title":"Adaptive and Natural Computing Algorithms","author":"M Bielecka","year":"2011","unstructured":"Bielecka, M., et al.: Modified jakubowski shape transducer for detecting osteophytes and erosions in finger joints. In: Dobnikar, A., Lotri\u010d, U., \u0160ter, B. (eds.) ICANNGA 2011. LNCS, vol. 6594, pp. 147\u2013155. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-20267-4_16"},{"key":"30_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1007\/978-3-642-15910-7_2","volume-title":"Computer Vision and Graphics","author":"M Bielecka","year":"2010","unstructured":"Bielecka, M., et al.: Application of shape description methodology to hand radiographs interpretation. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 11\u201318. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-15910-7_2"},{"key":"30_CR4","first-page":"531","volume":"9692","author":"M Bielecka","year":"2016","unstructured":"Bielecka, M., Korkosz, M.: Generalized shape language application to detection of a specific type of bone erosion in X-ray images. LNAI 9692, 531\u2013540 (2016)","journal-title":"LNAI"},{"issue":"10","key":"30_CR5","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1371\/journal.pone.0204546","volume":"13","author":"M Bielecka","year":"2018","unstructured":"Bielecka, M., Obuchowicz, R., Korkosz, M.: The shape language in application to the diagnosis of cervical vertebrae pathology. PLoS ONE 13(10), 17 (2018). Article number e0204546","journal-title":"PLoS ONE"},{"key":"30_CR6","doi-asserted-by":"crossref","unstructured":"Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Sig. Process. 7 (2013). Article ID 356291","DOI":"10.1155\/2013\/905685"},{"key":"30_CR7","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1016\/j.bspc.2016.02.006","volume":"27","author":"LS Chow","year":"2016","unstructured":"Chow, L.S., Paramesran, R.: Review of medical image quality assessment. Biomed. Signal Process. Control 27, 145\u2013154 (2016)","journal-title":"Biomed. Signal Process. Control"},{"key":"30_CR8","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.mri.2017.07.016","volume":"43","author":"LS Chow","year":"2017","unstructured":"Chow, L.S., Rajagopal, H.: Modified-BRISQUE as no reference image quality assessment for structural MR images. Magn. Reson. Imaging 43, 74\u201387 (2017)","journal-title":"Magn. Reson. Imaging"},{"key":"30_CR9","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1002\/jmri.23639","volume":"36","author":"A Deshmane","year":"2012","unstructured":"Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging. J. Magn. Reson. Imaging 36, 55\u201372 (2012)","journal-title":"J. Magn. Reson. Imaging"},{"issue":"2","key":"30_CR10","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1002\/jmri.20969","volume":"26","author":"O Dietrich","year":"2007","unstructured":"Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F., Schoenberg, S.O.: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J. Magn. Reson. Imaging 26(2), 375\u2013385 (2007)","journal-title":"J. Magn. Reson. Imaging"},{"issue":"1","key":"30_CR11","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1093\/rpd\/ncq138","volume":"141","author":"S Elojeimy","year":"2010","unstructured":"Elojeimy, S., Tipnis, S., Huda, W.: Relationship between radiographic techniques (kilovolt and milliampere-second) and CTDIVOL. Radiat. Prot. Dosim. 141(1), 43\u201349 (2010)","journal-title":"Radiat. Prot. Dosim."},{"key":"30_CR12","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-40022-8","volume-title":"Introduction to Artificial Intelligence","author":"M Flasi\u0144ski","year":"2016","unstructured":"Flasi\u0144ski, M.: Introduction to Artificial Intelligence. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-40022-8"},{"key":"30_CR13","doi-asserted-by":"publisher","DOI":"10.1142\/11216","volume-title":"Syntactic Pattern Recognition","author":"M Flasi\u0144ski","year":"2019","unstructured":"Flasi\u0144ski, M.: Syntactic Pattern Recognition. World Scientific, Singapore (2019)"},{"issue":"2","key":"30_CR14","doi-asserted-by":"publisher","first-page":"308","DOI":"10.1002\/jmri.21434","volume":"28","author":"EL Gedamu","year":"2008","unstructured":"Gedamu, E.L., Collins, D., Arnold, D.L.: Automated quality control of brain MR images. J. Magn. Reson. Imaging 28(2), 308\u2013319 (2008)","journal-title":"J. Magn. Reson. Imaging"},{"issue":"6","key":"30_CR15","doi-asserted-by":"publisher","first-page":"1263","DOI":"10.1002\/jmri.20935","volume":"25","author":"A Geissler","year":"2007","unstructured":"Geissler, A., Gartus, A., Foki, T., Tahamtan, A.R., Beisteiner, R., Barth, M.: Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J. Magn. Reson. Imaging 25(6), 1263\u20131270 (2007)","journal-title":"J. Magn. Reson. Imaging"},{"key":"30_CR16","doi-asserted-by":"crossref","unstructured":"Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 20th International Conference on Pattern Recognition, pp. 2366\u20132369. IEEE (2010)","DOI":"10.1109\/ICPR.2010.579"},{"issue":"13","key":"30_CR17","doi-asserted-by":"publisher","first-page":"800","DOI":"10.1049\/el:20080522","volume":"44","author":"Q Huynh-Thu","year":"2008","unstructured":"Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image\/video quality assessment. Electron. Lett. 44(13), 800\u2013801 (2008)","journal-title":"Electron. Lett."},{"issue":"2","key":"30_CR18","doi-asserted-by":"publisher","first-page":"126","DOI":"10.2214\/AJR.14.13116","volume":"204","author":"W Huda","year":"2015","unstructured":"Huda, W., Abrahams, R.B.: Radiographic techniques, contrast, and noise in X-ray imaging. Am. J. Roentgenol. 204(2), 126\u2013131 (2015)","journal-title":"Am. J. Roentgenol."},{"issue":"3","key":"30_CR19","doi-asserted-by":"publisher","first-page":"914","DOI":"10.1002\/mrm.27084","volume":"80","author":"J Jang","year":"2018","unstructured":"Jang, J., Bang, K., Jang, H., Hwang, D.: Alzheimer\u2019s disease neuroimaging initiative quality evaluation of no-reference MR images using multidirectional filters and image statistics. Magn. Reson. Med. 80(3), 914\u2013924 (2018)","journal-title":"Magn. Reson. Med."},{"key":"30_CR20","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1016\/j.tripleo.2008.03.018","volume":"106","author":"JB Ludlow","year":"2008","unstructured":"Ludlow, J.B., Ivanovic, M.: Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106, 106\u2013114 (2008)","journal-title":"Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod."},{"key":"30_CR21","doi-asserted-by":"crossref","unstructured":"Mafi, M., Martin, H., Adjouadi, M.: High impulse noise intensity removal in MRI images. In: IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1\u20136 (2017)","DOI":"10.1109\/SPMB.2017.8257030"},{"key":"30_CR22","doi-asserted-by":"publisher","first-page":"596","DOI":"10.1016\/j.mri.2012.09.009","volume":"31","author":"J Miao","year":"2013","unstructured":"Miao, J., Huang, F., Narayan, S., Wilson, D.L.: A new perceptual difference model for diagnostically relevant quantitative image quality evaluation: a preliminary study. Magn. Reson. Imaging 31, 596\u2013603 (2013)","journal-title":"Magn. Reson. Imaging"},{"key":"30_CR23","doi-asserted-by":"crossref","unstructured":"Obuchowicz, R., Oszust, M., Bielecka, M., Bielecki, A., Pi\u00f3rkowski, A.: Magnetic resonance image quality assessment by using non-maximum suppression and entropy analysis. Entropy 22(2) (2020). Article number e22020220","DOI":"10.3390\/e22020220"},{"key":"30_CR24","doi-asserted-by":"crossref","unstructured":"Obuchowicz, R., Pi\u00f3rkowski, A., Urbanik, A., Strzelecki, M.: Influence of acquisition time on MR image quality estimated with nonparametric measures based on texture features. Biomed Res. Int. 10 (2019). Article ID 3706581","DOI":"10.1155\/2019\/3706581"},{"key":"30_CR25","doi-asserted-by":"crossref","unstructured":"Ogiela, M.: Languages of shape feature description and syntactic methods for recognition of morphological changes of organs in analysis of selected X-ray images. In: Proceedings of Medical Imaging 1998, vol. 3338, pp. 1295\u20131305 (1998)","DOI":"10.1117\/12.310858"},{"key":"30_CR26","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1109\/51.887252","volume":"19","author":"M Ogiela","year":"2000","unstructured":"Ogiela, M., Tadeusiewicz, R.: Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer-algorithms for analysing the morphologic shape of pancreatic ducts for early diagnosis of changes in the pancreas. IEEE Eng. Med. Biol. Mag. 19, 94\u2013105 (2000)","journal-title":"IEEE Eng. Med. Biol. Mag."},{"key":"30_CR27","doi-asserted-by":"publisher","first-page":"2157","DOI":"10.1016\/j.patcog.2006.03.014","volume":"39","author":"M Ogiela","year":"2006","unstructured":"Ogiela, M., Tadeusiewicz, R., Ogiela, L.: Image languages in intelligent radiological palm diagnostics. Pattern Recogn. 39, 2157\u20132165 (2006)","journal-title":"Pattern Recogn."},{"key":"30_CR28","doi-asserted-by":"crossref","unstructured":"Okarma, K., Fastowicz, J.: No-reference quality assessment of 3D prints based on the GLCM analysis. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 788\u2013793. IEEE (2016)","DOI":"10.1109\/MMAR.2016.7575237"},{"issue":"2","key":"30_CR29","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1117\/1.JMI.4.2.025504","volume":"4","author":"M Osadebey","year":"2017","unstructured":"Osadebey, M., Pedersen, M., Arnold, D., Wendel-Mitoraj, K.: Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images. J. Med. Imaging 4(2), 502\u2013504 (2017)","journal-title":"J. Med. Imaging"},{"issue":"24","key":"30_CR30","doi-asserted-by":"publisher","first-page":"1656","DOI":"10.1109\/LSP.2017.2754539","volume":"11","author":"M Oszust","year":"2017","unstructured":"Oszust, M.: No-reference image quality assessment using image statistics and robust feature descriptors. IEEE Signal Process. Lett. 11(24), 1656\u20131660 (2017)","journal-title":"IEEE Signal Process. Lett."},{"key":"30_CR31","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.jvcir.2018.08.019","volume":"56","author":"M Oszust","year":"2018","unstructured":"Oszust, M.: No-reference image quality assessment with local features and high-order derivatives. J. Vis. Commun. Image Represent. 56, 15\u201326 (2018)","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"2","key":"30_CR32","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1259\/dmfr\/28403350","volume":"33","author":"D Schulze","year":"2004","unstructured":"Schulze, D., Heiland, M., Thurmann, H., Adam, G.: Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac. Radiol. 33(2), 83\u201386 (2004)","journal-title":"Dentomaxillofac. Radiol."},{"issue":"2","key":"30_CR33","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1615\/CritRevBiomedEng.v38.i2.20","volume":"38","author":"N Sinha","year":"2010","unstructured":"Sinha, N., Ramakrishnan, A.G.: Quality assessment in magnetic resonance images. Crit. Rev. Biomed. Eng. 38(2), 127\u2013141 (2010)","journal-title":"Crit. Rev. Biomed. Eng."},{"issue":"3","key":"30_CR34","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1385\/NI:4:3:243","volume":"4","author":"JP Woodard","year":"2006","unstructured":"Woodard, J.P., Carley-Spencer, M.P.: No-reference image quality metrics for structural MRI. Neuroinformatics 4(3), 243\u2013262 (2006)","journal-title":"Neuroinformatics"}],"container-title":["Lecture Notes in Computer Science","Computational Science \u2013 ICCS 2020"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-50423-6_30","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,18]],"date-time":"2024-06-18T23:15:30Z","timestamp":1718752530000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-50423-6_30"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030504229","9783030504236"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-50423-6_30","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"15 June 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Amsterdam","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccs-computsci2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iccs-meeting.org\/iccs2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"230","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"98","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"43% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"248 workshop papers were selected from 489 submissions to the thematic tracks. The conference was canceled due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}