{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:17:58Z","timestamp":1726085878879},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030492090"},{"type":"electronic","value":"9783030492106"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-49210-6_4","type":"book-chapter","created":{"date-parts":[[2020,6,4]],"date-time":"2020-06-04T23:25:39Z","timestamp":1591313139000},"page":"36-45","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["On the Relation Between Loss Functions and T-Norms"],"prefix":"10.1007","author":[{"given":"Francesco","family":"Giannini","sequence":"first","affiliation":[]},{"given":"Giuseppe","family":"Marra","sequence":"additional","affiliation":[]},{"given":"Michelangelo","family":"Diligenti","sequence":"additional","affiliation":[]},{"given":"Marco","family":"Maggini","sequence":"additional","affiliation":[]},{"given":"Marco","family":"Gori","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,6,5]]},"reference":[{"key":"4_CR1","first-page":"1","volume":"18","author":"SH Bach","year":"2017","unstructured":"Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random fields and probabilistic soft logic. J. Mach. Learn. Res. 18, 1\u201367 (2017)","journal-title":"J. Mach. Learn. Res."},{"key":"4_CR2","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-73721-6","volume-title":"Aggregation Functions: A Guide for Practitioners","author":"G Beliakov","year":"2007","unstructured":"Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 221. Springer, Heidelberg (2007). \nhttps:\/\/doi.org\/10.1007\/978-3-540-73721-6"},{"key":"4_CR3","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-7908-1787-4_1","volume-title":"Aggregation Operators","author":"T Calvo","year":"2002","unstructured":"Calvo, T., Koles\u00e1rov\u00e1, A., Komorn\u00edkov\u00e1, M., Mesiar, R.: Aggregation operators: properties classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators, pp. 3\u2013104. Springer, Heidelberg (2002). \nhttps:\/\/doi.org\/10.1007\/978-3-7908-1787-4_1"},{"key":"4_CR4","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1016\/j.artint.2015.08.011","volume":"244","author":"M Diligenti","year":"2017","unstructured":"Diligenti, M., Gori, M., Sacca, C.: Semantic-based regularization for learning and inference. Artif. Intell. 244, 143\u2013165 (2017)","journal-title":"Artif. Intell."},{"doi-asserted-by":"crossref","unstructured":"Donadello, I., Serafini, L., d\u2019Avila Garcez, A.: Logic tensor networks for semantic image interpretation. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 1596\u20131602 (2017)","key":"4_CR5","DOI":"10.24963\/ijcai.2017\/221"},{"key":"4_CR6","doi-asserted-by":"publisher","first-page":"1407","DOI":"10.1109\/TFUZZ.2018.2879627","volume":"27","author":"F Giannini","year":"2018","unstructured":"Giannini, F., Diligenti, M., Gori, M., Maggini, M.: On a convex logic fragment for learning and reasoning. IEEE Trans. Fuzzy Syst. 27, 1407\u20131416 (2018)","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"4_CR7","volume-title":"Deep Learn.","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learn., vol. 1. MIT Press, Cambridge (2016)"},{"issue":"1","key":"4_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2010.08.043","volume":"181","author":"M Grabisch","year":"2011","unstructured":"Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions: means. Inf. Sci. 181(1), 1\u201322 (2011)","journal-title":"Inf. Sci."},{"key":"4_CR9","doi-asserted-by":"publisher","DOI":"10.1007\/978-94-011-5300-3","volume-title":"Metamathematics of Fuzzy Logic","author":"P H\u00e1jek","year":"2013","unstructured":"H\u00e1jek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer, Dordrecht (2013). \nhttps:\/\/doi.org\/10.1007\/978-94-011-5300-3"},{"issue":"2","key":"4_CR10","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1016\/S0165-0114(01)00040-9","volume":"126","author":"S Jenei","year":"2002","unstructured":"Jenei, S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms. Fuzzy Sets Syst. 126(2), 199\u2013205 (2002)","journal-title":"Fuzzy Sets Syst."},{"issue":"1","key":"4_CR11","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1016\/j.fss.2003.06.007","volume":"143","author":"EP Klement","year":"2004","unstructured":"Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. position paper i: basic analytical and algebraic properties. Fuzzy Sets Syst. 143(1), 5\u201326 (2004)","journal-title":"Fuzzy Sets Syst."},{"issue":"3","key":"4_CR12","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1016\/S0165-0114(03)00327-0","volume":"145","author":"EP Klement","year":"2004","unstructured":"Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. position paper ii: general constructions and parameterized families. Fuzzy Sets Syst. 145(3), 411\u2013438 (2004)","journal-title":"Fuzzy Sets Syst."},{"issue":"3","key":"4_CR13","doi-asserted-by":"publisher","first-page":"439","DOI":"10.1016\/S0165-0114(03)00304-X","volume":"145","author":"EP Klement","year":"2004","unstructured":"Klement, E.P., Mesiar, R., Pap, E.: Triangular norms position paper iii: continuous t-norms. Fuzzy Sets Syst. 145(3), 439\u2013454 (2004)","journal-title":"Fuzzy Sets Syst."},{"key":"4_CR14","doi-asserted-by":"publisher","DOI":"10.1007\/978-94-015-9540-7","volume-title":"Triangular Norms","author":"EP Klement","year":"2013","unstructured":"Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, vol. 8. Springer, Dordrecht (2013). \nhttps:\/\/doi.org\/10.1007\/978-94-015-9540-7"},{"doi-asserted-by":"crossref","unstructured":"Kolb, S., Teso, S., Passerini, A., De Raedt, L.: Learning SMT (IRA) constraints using smt solvers. In: IJCAI. pp. 2333\u20132340 (2018)","key":"4_CR15","DOI":"10.24963\/ijcai.2018\/323"},{"key":"4_CR16","volume-title":"Introduction to Statistical Relational Learning","author":"D Koller","year":"2007","unstructured":"Koller, D., et al.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)"},{"key":"4_CR17","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4615-5217-8","volume-title":"Mathematical Principles of Fuzzy Logic","author":"V Nov\u00e1k","year":"2012","unstructured":"Nov\u00e1k, V., Perfilieva, I., Mockor, J.: Mathematical Principles of Fuzzy Logic, vol. 517. Springer, New York (2012). \nhttps:\/\/doi.org\/10.1007\/978-1-4615-5217-8"},{"issue":"1","key":"4_CR18","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s10994-006-5833-1","volume":"62","author":"M Richardson","year":"2006","unstructured":"Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107\u2013136 (2006)","journal-title":"Mach. Learn."},{"key":"4_CR19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-68791-7","volume-title":"Modeling Decisions: Information Fusion and Aggregation Operators","author":"V Torra","year":"2007","unstructured":"Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Heidelberg (2007). \nhttps:\/\/doi.org\/10.1007\/978-3-540-68791-7"},{"unstructured":"Xu, J., Zhang, Z., Friedman, T., Liang, Y., Broeck, G.V.d.: A semantic loss function for deep learning with symbolic knowledge. arXiv preprint \narXiv:1711.11157\n\n (2017)","key":"4_CR20"},{"unstructured":"Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Advances in Neural Information Processing Systems, pp. 2319\u20132328 (2017)","key":"4_CR21"}],"container-title":["Lecture Notes in Computer Science","Inductive Logic Programming"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-49210-6_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,6,4]],"date-time":"2020-06-04T23:26:04Z","timestamp":1591313164000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-49210-6_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030492090","9783030492106"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-49210-6_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"5 June 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ILP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Inductive Logic Programming","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Plovdiv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bulgaria","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ilp2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ilp2019.wordpress.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.7","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}