{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:45Z","timestamp":1726085085360},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_9","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T10:02:52Z","timestamp":1590573772000},"page":"132-142","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["LSTM Neural Network for Fine-Granularity Estimation on Baseline Load of Fast Demand Response"],"prefix":"10.1007","author":[{"given":"Shun","family":"Matsukawa","sequence":"first","affiliation":[]},{"given":"Keita","family":"Suzuki","sequence":"additional","affiliation":[]},{"given":"Chuzo","family":"Ninagawa","sequence":"additional","affiliation":[]},{"given":"Junji","family":"Morikawa","sequence":"additional","affiliation":[]},{"given":"Seiji","family":"Kondo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"key":"9_CR1","unstructured":"California ISO: What the duck curve tells us about managing a green grid. \nhttps:\/\/www.caiso.com\/Documents\/FlexibleResourcesHelpRenewables_FastFacts.pdf\n\n. Accessed 28 Feb 2020"},{"issue":"3","key":"9_CR2","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1002\/eej.22946","volume":"199","author":"T Nakamura","year":"2017","unstructured":"Nakamura, T., Morikawa, J., Ninagawa, C.: Prediction model on room temperature side effect due to FastADR aggregation for a cluster of building air-conditioning facilities. Electr. Eng. Jpn. 199(3), 17\u201325 (2017)","journal-title":"Electr. Eng. Jpn."},{"issue":"4","key":"9_CR3","doi-asserted-by":"publisher","first-page":"1988","DOI":"10.1109\/TSG.2013.2258049","volume":"4","author":"O Ma","year":"2013","unstructured":"Ma, O., Alkadi, N., Cappers, P., Denholm, P., Dudley, J., Goli, S., Hummon, M., Kiliccote, S., MacDonald, J., Matson, N., Olsen, D., Rose, C., Sohn, M.D., Starke, M., Kirby, B., O\u2019Malley, M.: Demand response for ancillary services. IEEE Trans. Smart Grid 4(4), 1988\u20131995 (2013)","journal-title":"IEEE Trans. Smart Grid"},{"issue":"4","key":"9_CR4","doi-asserted-by":"publisher","first-page":"1755","DOI":"10.1109\/TSG.2014.2309053","volume":"5","author":"TK Wijaya","year":"2014","unstructured":"Wijaya, T.K., Vasirani, M., Aberer, K.: When bias matters: an economic assessment of demand response baseline for residential customers. IEEE Trans. Smart Grid 5(4), 1755\u20131763 (2014)","journal-title":"IEEE Trans. Smart Grid"},{"key":"9_CR5","unstructured":"PJM: PJM Empirical Analysis of Demand Response Baseline Methods Results. \nhttps:\/\/www.pjm.com\/-\/media\/markets-ops\/demand-response\/pjm-empirical-analysis-of-dr-baseline-methods-results.ashx?la=en\n\n. Accessed 28 Feb 2020"},{"issue":"6","key":"9_CR6","doi-asserted-by":"publisher","first-page":"6972","DOI":"10.1109\/TSG.2018.2824842","volume":"9","author":"F Wang","year":"2018","unstructured":"Wang, F., Li, K., Liu, C., Mi, Z., Shafie-Khah, M., Catal\u00e3o, J.P.S.: Synchronous pattern matching principle-based residential demand response baseline estimation: mechanism analysis and approach description. IEEE Trans. Smart Grid 9(6), 6972\u20136985 (2018)","journal-title":"IEEE Trans. Smart Grid"},{"key":"9_CR7","doi-asserted-by":"crossref","unstructured":"Matsukawa, S., Ninagawa, C., Morikawa, J., Inaba, T., Kondo, S.: Stable segment method for multiple linear regression on baseline estimation for smart grid fast automated demand response. In: Proceedings of 9th IEEE PES ISGT Asia 2019, pp. 2571\u20132576. IEEE, Chengdu (2019)","DOI":"10.1109\/ISGT-Asia.2019.8881088"},{"key":"9_CR8","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1016\/j.rser.2018.02.002","volume":"88","author":"KB Debnath","year":"2018","unstructured":"Debnath, K.B., Mourshed, M.: Forecasting methods in energy planning models. Renew. Sustain. Energy Rev. 88, 297\u2013325 (2018)","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"8","key":"9_CR9","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"issue":"10","key":"9_CR10","doi-asserted-by":"publisher","first-page":"2451","DOI":"10.1162\/089976600300015015","volume":"12","author":"FA Gers","year":"2000","unstructured":"Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451\u20132471 (2000)","journal-title":"Neural Comput."},{"key":"9_CR11","doi-asserted-by":"publisher","first-page":"426","DOI":"10.1007\/978-3-030-30490-4_34","volume-title":"Artificial Neural Networks and Machine Learning \u2013 ICANN 2019: Text and Time Series","author":"Shun Matsukawa","year":"2019","unstructured":"Matsukawa, S., Ninagawa, C., Morikawa, J., Inaba, T., Kondo, S.: LSTM prediction on sudden occurrence of maintenance operation of air-conditioners in real-time pricing adaptive control. In: ICANN 2019. Lecture Notes in Computer Science, vol. 11730, pp. 426\u2013435 (2019)"},{"key":"9_CR12","doi-asserted-by":"publisher","first-page":"1219","DOI":"10.1002\/tee.22921","volume":"14","author":"S Matsukawa","year":"2019","unstructured":"Matsukawa, S., Takehara, M., Otsu, H., Morikawa, J., Inaba, T., Kondo, S., Ninagawa, C.: Prediction model on disturbance of maintenance operation during real-time pricing adaptive control for building air-conditioners. IEEJ Trans. Electr. Electron. Eng. 14, 1219\u20131225 (2019)","journal-title":"IEEJ Trans. Electr. Electron. Eng."},{"key":"9_CR13","unstructured":"Aoki, Y., Ninagawa, C., Morikawa, J., Kasai, T., Kondo, S.: A building multi-type air-conditioner emulator for development of machine learning algorithm on electric energy services. In: The papers of Technical Meeting on Smart Facilities. IEE Japan, Tokyo, pp. 61\u201366 (2019). (in Japanese)"},{"key":"9_CR14","unstructured":"Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations, San Diego. \narXiv:1412.6980\n\n (2017)"},{"key":"9_CR15","doi-asserted-by":"publisher","first-page":"823","DOI":"10.1002\/tee.22308","volume":"11","author":"J Morikawa","year":"2016","unstructured":"Morikawa, J., Yamaguchi, T., Ninagawa, C.: Smart grid real-time pricing optimization management on power consumption of building multi-type air-conditioners. IEEJ Trans. Electr. Electron. Eng. 11, 823\u2013825 (2016)","journal-title":"IEEJ Trans. Electr. Electron. Eng."},{"key":"9_CR16","unstructured":"Ismail, S., Ahmad, A.M.B.: Recurrent neural network with backpropagation through time algorithm for arabic recognition. In: Proceedings of 18th European Simulation Multiconference, Magdeburg. SCS Publishing House (2004)"},{"issue":"1","key":"9_CR17","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1214\/aoms\/1177729694","volume":"22","author":"S Kullback","year":"1951","unstructured":"Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79\u201386 (1951)","journal-title":"Ann. Math. Stat."}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T10:09:02Z","timestamp":1590574142000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_9","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}