{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:37Z","timestamp":1726085077747},"publisher-location":"Cham","reference-count":38,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_7","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:02:52Z","timestamp":1590588172000},"page":"99-118","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Efficient Implementation of a Self-sufficient Solar-Powered Real-Time Deep Learning-Based System"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2689-6015","authenticated-orcid":false,"given":"Sorin Liviu","family":"Jurj","sequence":"first","affiliation":[]},{"given":"Raul","family":"Rotar","sequence":"additional","affiliation":[]},{"given":"Flavius","family":"Opritoiu","sequence":"additional","affiliation":[]},{"given":"Mircea","family":"Vladutiu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"key":"7_CR1","doi-asserted-by":"crossref","unstructured":"Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. arXiv:1906.02243 (2019)","DOI":"10.18653\/v1\/P19-1355"},{"key":"7_CR2","unstructured":"Schmidt, V., Luccioni, A., Mukkavilli, S.K., Balasooriya, N., Sankaran, K., Chayes, J., Bengio, Y.: Visualizing the consequences of climate change using cycle-consistent adversarial networks. arXiv:1905.03709 (2019)"},{"key":"7_CR3","unstructured":"UN Sustainable Development Goals. https:\/\/www.un.org\/sustainabledevelopment\/sustainable-development-goals\/ . Accessed 01 Dec 2019"},{"key":"7_CR4","unstructured":"Nvidia Jetson TX2. https:\/\/www.nvidia.com\/en-us\/autonomous-machines\/embedded-systems\/jetson-tx2\/ . Accessed 01 Dec 2019"},{"key":"7_CR5","doi-asserted-by":"publisher","first-page":"709","DOI":"10.1038\/s41560-019-0441-z","volume":"4","author":"J Yan","year":"2019","unstructured":"Yan, J., Yang, Y., Elia Campana, P., He, J.: City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China. Nat. Energy 4, 709\u2013717 (2019)","journal-title":"Nat. Energy"},{"key":"7_CR6","doi-asserted-by":"crossref","unstructured":"Rotar, R., Jurj, S.L., Opritoiu, F., Vladutiu, M.: Position optimization method for a solar tracking device using the cast-shadow principle. In: IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), Iasi, Romania, pp. 61\u201370. IEEE (2018)","DOI":"10.1109\/SIITME.2018.8599198"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"Carballo, J.A., Bonilla, J., Berenguel, M., Fernandez-Reche, J., Garc\u00eda, G.: New approach for solar tracking systems based on computer vision, low cost hardware and deep learning. arXiv:1809.07048v1 (2018)","DOI":"10.1016\/j.renene.2018.08.101"},{"key":"7_CR8","doi-asserted-by":"publisher","unstructured":"Jurj, S.L., Opritoiu, F., Vladutiu, M.: Real-time identification of animals found in domestic areas of Europe. In: Proceedings of the SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), 1143313, 31 January 2020. https:\/\/doi.org\/10.1117\/12.2556376","DOI":"10.1117\/12.2556376"},{"key":"7_CR9","first-page":"122","volume":"120","author":"G Bradski","year":"2000","unstructured":"Bradski, G.: The openCV library. Dr. Dobb\u2019s J. Softw. Tools 120, 122\u2013125 (2000)","journal-title":"Dr. Dobb\u2019s J. Softw. Tools"},{"key":"7_CR10","doi-asserted-by":"crossref","unstructured":"Rungsuptaweekoon, K., Visoottiviseth, V., Takano, R.: Evaluating the power efficiency of deep learning inference on embedded GPU systems. In: 2nd International Conference on Information Technology (INCIT), Nakhonpathom, Thailand, pp. 1\u20135. IEEE (2017)","DOI":"10.1109\/INCIT.2017.8257866"},{"key":"7_CR11","doi-asserted-by":"crossref","unstructured":"Yudin, D., Slavioglo, D.: Usage of fully convolutional network with clustering for traffic light detection. In: 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, pp. 1\u20136. IEEE (2018)","DOI":"10.1109\/MECO.2018.8406049"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Shihadeh, J., Ansari, A., Ozunfunmi, T.: Deep learning based image classification for remote medical diagnosis. In: IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, pp. 1\u20138. IEEE (2018)","DOI":"10.1109\/GHTC.2018.8601558"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Yin, X., Chen, L., Zhang, X., Gao, Z.: Object detection implementation and optimization on embedded GPU system. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia, Spain, pp. 1\u20135. IEEE (2018)","DOI":"10.1109\/BMSB.2018.8436848"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"Arechiga, A.P., Michaels, A.J., Black, J.T.: Onboard image processing for small satellites. In: NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, pp. 234\u2013240. IEEE (2018)","DOI":"10.1109\/NAECON.2018.8556744"},{"key":"7_CR15","doi-asserted-by":"crossref","unstructured":"Vandersteegen, M., Van Beeck, K., Goedem\u00e9, T.: Super accurate low latency object detection on a surveillance UAV. arXiv:1904.02024v1 (2019)","DOI":"10.23919\/MVA.2019.8758060"},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"\u0160pa\u0148hel, J., Sochor, J., Makarov, A.: Detection of traffic violations of road users based on convolutional neural networks. In: 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, pp. 1\u20136. IEEE (2018)","DOI":"10.1109\/NEUREL.2018.8586996"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Yuan, L., Lu, F.: Real-time ear detection based on embedded systems. In: International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu, China, pp. 115\u2013120. IEEE (2018)","DOI":"10.1109\/ICMLC.2018.8526987"},{"key":"7_CR18","doi-asserted-by":"crossref","unstructured":"Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li, P., Yan, T., Lendasse, A.: Embedded online fish detection and tracking system via YOLOv3 and parallel correlation filter. In: OCEANS 2018 MTS\/IEEE Charleston, Charleston, SC, USA, pp. 1\u20136. IEEE (2018)","DOI":"10.1109\/OCEANS.2018.8604658"},{"key":"7_CR19","doi-asserted-by":"crossref","unstructured":"Saypadith, S., Aramvith, S.: Real-time multiple face recognition using deep learning on embedded GPU system. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, pp. 1318\u20131324. IEEE (2018)","DOI":"10.23919\/APSIPA.2018.8659751"},{"key":"7_CR20","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TCC.2018.2822718","volume":"13","author":"W Zhang","year":"2019","unstructured":"Zhang, W., Sun, H., Zhao, D., Xu, L., Liu, X., Zhou, J., Ning, H., Guo, Y., Yang, S.: A streaming cloud platform for real-time video processing on embedded devices. IEEE Trans. Cloud Comput. 13, 1 (2019)","journal-title":"IEEE Trans. Cloud Comput."},{"key":"7_CR21","doi-asserted-by":"publisher","first-page":"1730","DOI":"10.1109\/JBHI.2018.2868656","volume":"23","author":"M Goyal","year":"2019","unstructured":"Goyal, M., Reeves, N.D., Rajbhandari, S., Yap, M.H.: Robust methods for real-time diabetic foot ulcer detection and localization on mobile devices. IEEE J. Biomed. Health Inf. 23, 1730\u20131741 (2019)","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Modasshir, M., Li, A.Q., Rekleitis, I.: Deep neural networks: a comparison on different computing platforms. In: 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, pp. 383\u2013389. IEEE (2018)","DOI":"10.1109\/CRV.2018.00060"},{"key":"7_CR23","doi-asserted-by":"crossref","unstructured":"Vaidya, B., Paunwala, C.: Comparative analysis of motion based and feature based algorithms for object detection and tracking. In: International Conference on Soft Computing and its Engineering Applications (icSoftComp), Changa, India. pp. 1\u20137. IEEE (2017)","DOI":"10.1109\/ICSOFTCOMP.2017.8280088"},{"key":"7_CR24","doi-asserted-by":"crossref","unstructured":"Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), Cambridge, UK, pp. 28\u201331. IEEE (2004)","DOI":"10.1109\/ICPR.2004.1333992"},{"key":"7_CR25","unstructured":"Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, USA, pp. 246\u2013252. IEEE (1999)"},{"key":"7_CR26","doi-asserted-by":"crossref","unstructured":"Moon, S., Lee, J., Nam, D., Yoo, W., Kim, W.: A comparative study on preprocessing methods for object tracking in sports events. In: 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-si Gangwon-do, Korea (South), pp. 460\u2013462. IEEE (2018)","DOI":"10.23919\/ICACT.2018.8323793"},{"key":"7_CR27","doi-asserted-by":"crossref","unstructured":"Godbehere, A.B., Matsukawa, A., Goldberg, K.: Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In: 2012 American Control Conference (ACC), Montreal, QC, Canada, pp. 4305\u20134312. IEEE (2012)","DOI":"10.1109\/ACC.2012.6315174"},{"key":"7_CR28","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1007\/978-1-4615-0913-4_11","volume-title":"Video-Based Surveillance Systems","author":"P Kaewtrakulpong","year":"2002","unstructured":"Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135\u2013144. Springer, Boston (2002)"},{"key":"7_CR29","doi-asserted-by":"publisher","first-page":"957","DOI":"10.1109\/JPHOTOV.2019.2911871","volume":"9","author":"C Berthod","year":"2019","unstructured":"Berthod, C., Kristensen, S.T., Strandberg, R., Odden, J.O., Nie, S., Hameiri, Z., S\u00e6tre, T.O.: Temperature sensitivity of multicrystalline silicon solar cells. IEEE J. Photovolt. 9, 957\u2013964 (2019)","journal-title":"IEEE J. Photovolt."},{"key":"7_CR30","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556v6 (2015)"},{"key":"7_CR31","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. arXiv:1409.4842v1 (2014)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"7_CR32","unstructured":"He, K., et al.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 . (2015)"},{"key":"7_CR33","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. arXiv:1801.04381v4 (2019)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"7_CR34","unstructured":"TensorflowProtobuf. https:\/\/github.com\/tensorflow\/tensorflow\/blob\/master\/tensorflow\/core\/protobuf\/config.proto\/ . Accessed 01 Dec 2019"},{"key":"7_CR35","unstructured":"Twilio Programmable SMS. https:\/\/www.twilio.com\/docs\/sms\/send-messages . Accessed 01 Dec 2019"},{"key":"7_CR36","unstructured":"JetPack. https:\/\/developer.nvidia.com\/embedded\/jetpack\/ . Accessed 01 Dec 2019"},{"key":"7_CR37","unstructured":"Convenient Power Measurement Script on the Jetson TX2\/Tegra X2. https:\/\/embeddeddl.wordpress.com\/2018\/04\/25\/convenient-power-measurements-on-the-jetson-tx2-tegra-x2-board\/ . Accessed 01 Dec 2019"},{"key":"7_CR38","unstructured":"Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. arXiv:1907.10597v3 (2019)"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,25]],"date-time":"2022-10-25T04:28:27Z","timestamp":1666672107000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_7","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}