{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:58Z","timestamp":1726085098298},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_29","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:02:52Z","timestamp":1590588172000},"page":"377-388","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["On Image Prefiltering for Skin Lesion Characterization Utilizing Deep Transfer Learning"],"prefix":"10.1007","author":[{"given":"K.","family":"Delibasis","sequence":"first","affiliation":[]},{"given":"S. V.","family":"Georgakopoulos","sequence":"additional","affiliation":[]},{"given":"S. K.","family":"Tasoulis","sequence":"additional","affiliation":[]},{"given":"I.","family":"Maglogiannis","sequence":"additional","affiliation":[]},{"given":"V. P.","family":"Plagianakos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"key":"29_CR1","unstructured":"https:\/\/www.who.int\/uv\/faq\/skincancer\/en\/index1.html"},{"issue":"3","key":"29_CR2","doi-asserted-by":"publisher","first-page":"e1","DOI":"10.1016\/j.cmpb.2010.06.016","volume":"104","author":"Q Abbas","year":"2011","unstructured":"Abbas, Q., Fond\u00f3n, I., Rashid, M.: Unsupervised skin lesions borderdetection via two-dimensional image analysis. Comput. Methods Prog. Biomed. 104(3), e1\u2013e15 (2011). \nhttps:\/\/doi.org\/10.1016\/j.cmpb.2010.06.016","journal-title":"Comput. Methods Prog. Biomed."},{"key":"29_CR3","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1017\/CBO9780511569920.003","volume-title":"On-Line Learning in Neural Networks","author":"L\u00e9on Bottou","year":"1999","unstructured":"Bottou, L.: On-line learning and stochastic approximations. In: In On-line Learning in Neural Networks, pp. 9\u201342. Cambridge University Press, Cambridge (1998)"},{"key":"29_CR4","doi-asserted-by":"crossref","unstructured":"Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121\u20133124 (2010)","DOI":"10.1109\/ICPR.2010.764"},{"key":"29_CR5","doi-asserted-by":"crossref","unstructured":"Codella, N.C.F., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., Halpern, A.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic) (2017)","DOI":"10.1109\/ISBI.2018.8363547"},{"key":"29_CR6","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"issue":"6","key":"29_CR7","doi-asserted-by":"publisher","first-page":"1805","DOI":"10.1007\/s00521-018-3711-y","volume":"31","author":"SV Georgakopoulos","year":"2019","unstructured":"Georgakopoulos, S.V., Kottari, K., Delibasis, K., Plagianakos, V.P., Maglogiannis, I.: Improving the performance of convolutional neural networkfor skin image classification using the response of image analysis filters. Neural Comput. Appl. 31(6), 1805\u20131822 (2019). \nhttps:\/\/doi.org\/10.1007\/s00521-018-3711-y","journal-title":"Neural Comput. Appl."},{"key":"29_CR8","unstructured":"Jafari, M.H., Nasr-Esfahani, E., Karimi, N., Soroushmehr, S.M.R., Samavi, S., Najarian, K.: Extraction of skin lesions from non-dermoscopic images using deep learning (2016). \narXiv: 1609.02374"},{"key":"29_CR9","first-page":"1097","volume-title":"Advances in Neural Information Processing Systems","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097\u20131105. Curran Associates Inc., New York (2012)"},{"issue":"2","key":"29_CR10","doi-asserted-by":"publisher","first-page":"556","DOI":"10.3390\/s18020556","volume":"18","author":"Y Li","year":"2018","unstructured":"Li, Y., Shen, L.: Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2), 556 (2018). \nhttps:\/\/www.mdpi.com\/1424-8220\/18\/2\/556","journal-title":"Sensors"},{"issue":"5","key":"29_CR11","doi-asserted-by":"publisher","first-page":"721","DOI":"10.1109\/TITB.2009.2017529","volume":"13","author":"I Maglogiannis","year":"2009","unstructured":"Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf. Technol. Biomed. 13(5), 721\u2013733 (2009)","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"key":"29_CR12","doi-asserted-by":"publisher","first-page":"214","DOI":"10.1007\/11752912_23","volume-title":"Advances in Artificial Intelligence","author":"I Maglogiannis","year":"2006","unstructured":"Maglogiannis, I., Zafiropoulos, E., Kyranoudis, C.: Intelligent segmentation and classification of pigmented skin lesions in dermatological images. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) Advances in Artificial Intelligence, pp. 214\u2013223. Springer, Heidelberg (2006)"},{"key":"29_CR13","doi-asserted-by":"crossref","unstructured":"Mhaske, H.R., Phalke, D.A.: Melanoma skin cancer detection and classification based on supervised and unsupervised learning. In: 2013 International Conference on Circuits, Controls and Communications (CCUBE), pp. 1\u20135 (2013)","DOI":"10.1109\/CCUBE.2013.6718539"},{"key":"29_CR14","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1016\/j.cmpb.2016.03.032","volume":"131","author":"R Oliveira","year":"2016","unstructured":"Oliveira, R., Filho, M., Papa, J., Pereira, A., Manuel, J., Tavares, J.: Computational methods for the image segmentation of pigmented skin lesions: a review. Comput. Methods Programs Biomed. 131, 127\u2013141 (2016)","journal-title":"Comput. Methods Programs Biomed."},{"key":"29_CR15","doi-asserted-by":"publisher","first-page":"61","DOI":"10.18178\/ijmlc.2018.8.1.664","volume":"8","author":"JA Salido","year":"2018","unstructured":"Salido, J.A., Ruiz, C.: Using deep learning for melanoma detection in dermoscopy images. Int. J. Mach. Learn. Comput. 8, 61\u201368 (2018). \nhttps:\/\/doi.org\/10.18178\/ijmlc.2018.8.1.664","journal-title":"Int. J. Mach. Learn. Comput."},{"issue":"3","key":"29_CR16","first-page":"177","volume":"67","author":"RL Siegel","year":"2017","unstructured":"Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J., Meester, R.G.S., Barzi, A., Jemal, A.: Colorectal cancer statistics, 2017. CA: Cancer J. Clin. 67(3), 177\u2013193 (2017)","journal-title":"CA: Cancer J. Clin."},{"key":"29_CR17","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)"},{"key":"29_CR18","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1016\/j.cogsys.2018.12.007","volume":"54","author":"M Talo","year":"2019","unstructured":"Talo, M., Baloglu, U.B., Y\u0131ld\u0131r\u0131m, \u00d6., Acharya, U.R.: Application of deep transfer learning for automated brain abnormality classification using mr images. Cogn. Syst. Res. 54, 176\u2013188 (2019)","journal-title":"Cogn. Syst. Res."},{"key":"29_CR19","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/978-3-642-12842-4_28","volume-title":"Artificial Intelligence: Theories, Models and Applications","author":"SK Tasoulis","year":"2010","unstructured":"Tasoulis, S.K., Doukas, C.N., Maglogiannis, I., Plagianakos, V.P.: Skin lesions characterisation utilising clustering algorithms. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) Artificial Intelligence: Theories, Models and Applications, pp. 243\u2013253. Springer, Heidelberg (2010)"},{"key":"29_CR20","doi-asserted-by":"publisher","first-page":"180161","DOI":"10.1038\/sdata.2018.161","volume":"5","author":"P Tschandl","year":"2018","unstructured":"Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset: a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018)","journal-title":"Sci. Data"},{"key":"29_CR21","unstructured":"Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advance in Neural Information Processing System, vol. 27, pp. 3320\u20133328 (2014)"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:13:11Z","timestamp":1590588791000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_29","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}