{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:56Z","timestamp":1726085096949},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_28","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T10:02:52Z","timestamp":1590573772000},"page":"365-376","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Multidataset Incremental Training for Optic Disc Segmentation"],"prefix":"10.1007","author":[{"given":"Javier","family":"Civit-Masot","sequence":"first","affiliation":[]},{"given":"Antonis","family":"Billis","sequence":"additional","affiliation":[]},{"given":"MJ","family":"Dominguez-Morales","sequence":"additional","affiliation":[]},{"given":"Saturnino","family":"Vicente-Diaz","sequence":"additional","affiliation":[]},{"given":"Anton","family":"Civit","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"issue":"4","key":"28_CR1","doi-asserted-by":"publisher","first-page":"87","DOI":"10.3390\/sym10040087","volume":"10","author":"B Al-Bander","year":"2018","unstructured":"Al-Bander, B., Williams, B., Al-Nuaimy, W., Al-Taee, M., Pratt, H., Zheng, Y.: Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry 10(4), 87 (2018)","journal-title":"Symmetry"},{"key":"28_CR2","doi-asserted-by":"crossref","unstructured":"Aujih, A., Izhar, L., M\u00e9riaudeau, F., Shapiai, M.I.: Analysis of retinal vessel segmentation with deep learning and its effect on diabetic retinopathy classification. In: 2018 International Conference on Intelligent and Advanced System (ICIAS), pp.\u00a01\u20136. IEEE (2018)","DOI":"10.1109\/ICIAS.2018.8540642"},{"key":"28_CR3","doi-asserted-by":"crossref","unstructured":"Bhat, S.H., Kumar, P.: Segmentation of optic disc by localized active contour model in retinal fundus image. In: Smart Innovations in Communication and Computational Sciences, pp. 35\u201344. Springer (2019)","DOI":"10.1007\/978-981-13-2414-7_4"},{"issue":"59","key":"28_CR4","first-page":"44","volume":"19","author":"RR Bourne","year":"2006","unstructured":"Bourne, R.R.: The optic nerve head in glaucoma. Community Eye Health 19(59), 44 (2006)","journal-title":"Community Eye Health"},{"key":"28_CR5","doi-asserted-by":"crossref","unstructured":"Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789\u20138797 (2018)","DOI":"10.1109\/CVPR.2018.00916"},{"key":"28_CR6","unstructured":"Chollet, F.: Building powerful image classification models using very little data. Keras Blog (2016)"},{"key":"28_CR7","volume-title":"Deep Learning with Python","author":"F Chollet","year":"2017","unstructured":"Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., Greenwich (2017)","edition":"1"},{"key":"28_CR8","doi-asserted-by":"publisher","first-page":"142379","DOI":"10.1109\/ACCESS.2019.2944692","volume":"7","author":"J Civit-Masot","year":"2019","unstructured":"Civit-Masot, J., Luna-Perej\u00f3n, F., Vicente-D\u00edaz, S., Rodr\u00edguez Corral, J.M., Civit, A.: TPU cloud-based generalized U-net for eye fundus image segmentation. IEEE Access 7, 142379\u2013142387 (2019). \nhttps:\/\/doi.org\/10.1109\/ACCESS.2019.2944692","journal-title":"IEEE Access"},{"issue":"1","key":"28_CR9","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s13721-015-0110-5","volume":"5","author":"P Das","year":"2016","unstructured":"Das, P., Nirmala, S., Medhi, J.P.: Diagnosis of glaucoma using CDR and NRR area in retina images. Netw. Model. Anal. Health Inform. Bioinform. 5(1), 3 (2016)","journal-title":"Netw. Model. Anal. Health Inform. Bioinform."},{"issue":"2","key":"28_CR10","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1109\/MM.2018.112130030","volume":"38","author":"J Dean","year":"2018","unstructured":"Dean, J., Patterson, D., Young, C.: A new golden age in computer architecture: empowering the machine-learning revolution. IEEE Micro 38(2), 21\u201329 (2018)","journal-title":"IEEE Micro"},{"issue":"3","key":"28_CR11","doi-asserted-by":"publisher","first-page":"297","DOI":"10.2307\/1932409","volume":"26","author":"LR Dice","year":"1945","unstructured":"Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297\u2013302 (1945)","journal-title":"Ecology"},{"key":"28_CR12","doi-asserted-by":"crossref","unstructured":"Fumero, F., Alay\u00f3n, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: Rim-one: an open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp.\u00a01\u20136. IEEE (2011)","DOI":"10.1109\/CBMS.2011.5999143"},{"key":"28_CR13","unstructured":"Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint \narXiv:1704.04861\n\n (2017)"},{"issue":"5","key":"28_CR14","doi-asserted-by":"publisher","first-page":"e0177726","DOI":"10.1371\/journal.pone.0177726","volume":"12","author":"SJ Kim","year":"2017","unstructured":"Kim, S.J., Cho, K.J., Oh, S.: Development of machine learning models for diagnosis of glaucoma. PLoS One 12(5), e0177726 (2017)","journal-title":"PLoS One"},{"issue":"9","key":"28_CR15","doi-asserted-by":"publisher","first-page":"1656","DOI":"10.3390\/app8091656","volume":"8","author":"S Kim","year":"2018","unstructured":"Kim, S., Bae, W., Masuda, K., Chung, C., Hwang, D.: Fine-grain segmentation of the intervertebral discs from MR spine images using deep convolutional neural networks: BSU-Net. Appl. Sci. 8(9), 1656 (2018)","journal-title":"Appl. Sci."},{"key":"28_CR16","doi-asserted-by":"crossref","unstructured":"Lian, S., Li, L., Lian, G., Xiao, X., Luo, Z., Li, S.: A global and local enhanced residual u-net for accurate retinal vessel segmentation. IEEE\/ACM Trans. Comput. Biol. Bioinform. (2019)","DOI":"10.1109\/TCBB.2019.2917188"},{"key":"28_CR17","unstructured":"Lingam, C.L., Mansberger, S., Miglior, S., Paranhos, A., Pasquale, L.R., Susanna\u00a0Jr., R., Wang, N.: 4. risk factors (ocular). Diagnosis of Primary Open Angle Glaucoma: WGA consensus series-10, vol. 10, p. 127 (2017)"},{"issue":"1","key":"28_CR18","doi-asserted-by":"publisher","first-page":"5","DOI":"10.15353\/cjo.79.439","volume":"79","author":"S MacIver","year":"2017","unstructured":"MacIver, S., MacDonald, D., Prokopich, C.L.: Screening, diagnosis, and management of open angle glaucoma. Can. J. Optom. 79(1), 5\u201371 (2017)","journal-title":"Can. J. Optom."},{"issue":"3","key":"28_CR19","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1136\/bjo.2005.081224","volume":"90","author":"HA Quigley","year":"2006","unstructured":"Quigley, H.A., Broman, A.T.: The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262\u2013267 (2006)","journal-title":"Br. J. Ophthalmol."},{"key":"28_CR20","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234\u2013241. Springer (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"issue":"3","key":"28_CR21","doi-asserted-by":"publisher","first-page":"618","DOI":"10.1134\/S1054661817030269","volume":"27","author":"A Sevastopolsky","year":"2017","unstructured":"Sevastopolsky, A.: Optic disc and cup segmentation methods for glaucoma detection with modification of U-net convolutional neural network. Pattern Recogn. Image Anal. 27(3), 618\u2013624 (2017)","journal-title":"Pattern Recogn. Image Anal."},{"key":"28_CR22","doi-asserted-by":"crossref","unstructured":"Shankaranarayana, S.M., Ram, K., Mitra, K., Sivaprakasam, M.: Joint optic disc and cup segmentation using fully convolutional and adversarial networks. In: Fetal, Infant and Ophthalmic Medical Image Analysis, OMIA 2017, pp. 168\u2013176. Springer International Publishing (2017)","DOI":"10.1007\/978-3-319-67561-9_19"},{"key":"28_CR23","doi-asserted-by":"crossref","unstructured":"Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Tabish, A.U.S.: Drishti-GS: retinal image dataset for Optic Nerve Head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53\u201356. IEEE (2014)","DOI":"10.1109\/ISBI.2014.6867807"},{"key":"28_CR24","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1016\/j.bspc.2018.01.014","volume":"42","author":"N Thakur","year":"2018","unstructured":"Thakur, N., Juneja, M.: Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed. Signal Process. Control 42, 162\u2013189 (2018)","journal-title":"Biomed. Signal Process. Control"},{"key":"28_CR25","doi-asserted-by":"publisher","first-page":"122634","DOI":"10.1109\/ACCESS.2019.2935138","volume":"7","author":"P Xiuqin","year":"2019","unstructured":"Xiuqin, P., Zhang, Q., Zhang, H., Li, S.: A fundus retinal vessels segmentation scheme based on the improved deep learning U-net model. IEEE Access 7, 122634\u2013122643 (2019). \nhttps:\/\/doi.org\/10.1109\/ACCESS.2019.2935138","journal-title":"IEEE Access"},{"key":"28_CR26","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1016\/j.compmedimag.2016.07.012","volume":"55","author":"J Zilly","year":"2017","unstructured":"Zilly, J., Buhmann, J.M., Mahapatra, D.: Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph. 55, 28\u201341 (2017)","journal-title":"Comput. Med. Imaging Graph."},{"key":"28_CR27","doi-asserted-by":"crossref","unstructured":"Zoph, B., Cubuk, E.D., Ghiasi, G., Lin, T.Y., Shlens, J., Le, Q.V.: Learning data augmentation strategies for object detection. arXiv preprint \narXiv:1906.11172\n\n (2019)","DOI":"10.1109\/CVPR.2019.00020"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T10:12:49Z","timestamp":1590574369000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_28","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}