{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:53Z","timestamp":1726085093939},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_27","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:02:52Z","timestamp":1590588172000},"page":"352-364","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Medical Knowledge-Based Deep Learning Framework for Disease Prediction on Unstructured Radiology Free-Text Reports Under Low Data Condition"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0182-4231","authenticated-orcid":false,"given":"Shashank","family":"Shetty","sequence":"first","affiliation":[]},{"given":"V. S.","family":"Ananthanarayana","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6617-7333","authenticated-orcid":false,"given":"Ajit","family":"Mahale","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"key":"27_CR1","unstructured":"Agarap, A.F.: Deep learning using rectified linear units (relu). CoRR abs\/1803.08375, March 2018"},{"key":"27_CR2","first-page":"281","volume":"13","author":"J Bergstra","year":"2012","unstructured":"Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281\u2013305 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"27_CR3","doi-asserted-by":"crossref","unstructured":"Cao, Y., Huang, L., Ji, H., Chen, X., Li, J.: Bridge text and knowledge by learning multi-prototype entity mention embedding, pp. 1623\u20131633. ACL (2017)","DOI":"10.18653\/v1\/P17-1149"},{"key":"27_CR4","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1016\/j.jbi.2017.04.011","volume":"69","author":"S Castro","year":"2017","unstructured":"Castro, S., Tseytlin, E., Medvedeva, O., Mitchell, K., Visweswaran, S., Bekhuis, T., Jacobson, R.: Automated annotation and classification of BI-RADS assessment from radiology reports. J. Biomed. Inform. 69, 177\u2013187 (2017)","journal-title":"J. Biomed. Inform."},{"key":"27_CR5","unstructured":"Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. CoRR (2011)"},{"issue":"2","key":"27_CR6","first-page":"304","volume":"23","author":"D Demner-Fushman","year":"2016","unstructured":"Demner-Fushman, D., Kohli, M.D., Rosenman, M.B., Shooshan, S.E., Rodriguez, L., Antani, S.K., Thoma, G.R., McDonald, C.J.: Preparing a collection of radiology examinations for distribution and retrieval. JAMIA 23(2), 304\u201310 (2016)","journal-title":"JAMIA"},{"issue":"2","key":"27_CR7","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1016\/j.annemergmed.2013.02.001","volume":"62","author":"S Dutta","year":"2013","unstructured":"Dutta, S., Long, W.J., Brown, D.F., Reisner, A.T.: Automated detection using natural language processing of radiologists recommendations for additional imaging of incidental findings. Ann. Emerg. Med. 62(2), 162\u2013169 (2013)","journal-title":"Ann. Emerg. Med."},{"key":"27_CR8","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511973000","volume-title":"Machine Learning: The Art and Science of Algorithms That Make Sense of Data","author":"P Flach","year":"2012","unstructured":"Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press, Cambridge (2012)"},{"key":"27_CR9","volume-title":"Deep Learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)"},{"key":"27_CR10","doi-asserted-by":"publisher","first-page":"314","DOI":"10.1007\/s10278-016-9931-8","volume":"30","author":"S Hassanpour","year":"2017","unstructured":"Hassanpour, S., Bay, G., Langlotz, C.: Characterization of change and significance for clinical findings in radiology reports through natural language processing. J. Digit. Imaging 30, 314\u2013322 (2017)","journal-title":"J. Digit. Imaging"},{"key":"27_CR11","unstructured":"Liu, G., Hsu, T.H., McDermott, M.B.A., Boag, W., Weng, W., Szolovits, P., Ghassemi, M.: Clinically accurate chest x-ray report generation. CoRR (2019)"},{"key":"27_CR12","doi-asserted-by":"publisher","unstructured":"Santos, I., Nedjah, N., Mourelle, L.: Sentiment analysis using convolutional neural network with fastText embeddings, pp. 1\u20135, November 2017. \nhttps:\/\/doi.org\/10.1109\/LA-CCI.2017.8285683","DOI":"10.1109\/LA-CCI.2017.8285683"},{"key":"27_CR13","doi-asserted-by":"crossref","unstructured":"Patel, K., Patel, D., Golakiya, M., Bhattacharyya, P., Birari, N.: Adapting pre-trained word embeddings for use in medical coding, pp. 302\u2013306. ACL (2017)","DOI":"10.18653\/v1\/W17-2338"},{"key":"27_CR14","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation, pp. 1532\u20131543. Association for Computational Linguistics, October 2014","DOI":"10.3115\/v1\/D14-1162"},{"issue":"2","key":"27_CR15","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1007\/s10278-017-0021-3","volume":"31","author":"H Trivedi","year":"2017","unstructured":"Trivedi, H., Mesterhazy, J., Laguna, B., Vu, T., Sohn, J.: Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson\u2019s natural language processing algorithm. J. Digit. Imaging 31(2), 245\u2013251 (2017)","journal-title":"J. Digit. Imaging"},{"key":"27_CR16","doi-asserted-by":"publisher","first-page":"457","DOI":"10.1007\/978-3-030-00928-1_52","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"Yuan Xue","year":"2018","unstructured":"Xue, Y., Xu, T., Rodney\u00a0Long, L., Xue, Z., Antani, S., Thoma, G.R., Huang, X.: Multimodal recurrent model with attention for automated radiology report generation, pp. 457\u2013466. Springer International Publishing, Cham (2018)"},{"key":"27_CR17","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Ding, D.Y., Qian, T., Manning, C.D., Langlotz, C.P.: Learning to summarize radiology findings. CoRR (2018)","DOI":"10.18653\/v1\/W18-5623"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:10:47Z","timestamp":1590588647000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_27","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}