{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:54Z","timestamp":1726085094018},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_26","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:02:52Z","timestamp":1590588172000},"page":"338-351","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Feature Selection with Artificial Bee Colony Algorithms for Classifying Parkinson\u2019s Diseases"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6891-5851","authenticated-orcid":false,"given":"Rafet","family":"Durgut","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4457-2081","authenticated-orcid":false,"given":"Yusuf Yarg\u0131","family":"Baydilli","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4890-5648","authenticated-orcid":false,"given":"Mehmet Emin","family":"Aydin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"issue":"10053","key":"26_CR1","doi-asserted-by":"publisher","first-page":"1459","DOI":"10.1016\/S0140-6736(16)31012-1","volume":"388","author":"H Wang","year":"2016","unstructured":"Wang, H., et al.: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980\u20132015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053), 1459\u20131544 (2016)","journal-title":"Lancet"},{"key":"26_CR2","doi-asserted-by":"crossref","unstructured":"Oertel, W.H.: Recent advances in treating Parkinson\u2019s disease. F1000Research, 6 Mar 2017","DOI":"10.12688\/f1000research.10100.1"},{"issue":"6","key":"26_CR3","doi-asserted-by":"publisher","first-page":"a008870","DOI":"10.1101\/cshperspect.a008870","volume":"2","author":"J Massano","year":"2012","unstructured":"Massano, J., Bhatia, K.P.: Clinical approach to Parkinson\u2019s disease: features, diagnosis, and principles of management. Cold Spring Harb. Perspect. Med. 2(6), a008870 (2012)","journal-title":"Cold Spring Harb. Perspect. Med."},{"issue":"1","key":"26_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1475-925X-6-23","volume":"6","author":"MA Little","year":"2007","unstructured":"Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A., Moroz, I.M.: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMed. Eng. OnLine 6(1), 1\u201319 (2007)","journal-title":"BioMed. Eng. OnLine"},{"issue":"4","key":"26_CR5","doi-asserted-by":"publisher","first-page":"1015","DOI":"10.1109\/TBME.2008.2005954","volume":"56","author":"MA Little","year":"2009","unstructured":"Little, M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson\u2019s disease. IEEE Trans. Biomed. Eng. 56(4), 1015\u20131022 (2009)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"26_CR6","first-page":"2018","volume":"1\u201324","author":"Z Cai","year":"2018","unstructured":"Cai, Z., et al.: An intelligent Parkinson\u2019s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach. Comput. Math. Methods Med. 1\u201324, 2018 (2018)","journal-title":"Comput. Math. Methods Med."},{"issue":"2","key":"26_CR7","doi-asserted-by":"publisher","first-page":"1568","DOI":"10.1016\/j.eswa.2009.06.040","volume":"37","author":"R Das","year":"2010","unstructured":"Das, R.: A comparison of multiple classification methods for diagnosis of Parkinson\u2019s disease. Expert Syst. Appl. 37(2), 1568\u20131572 (2010)","journal-title":"Expert Syst. Appl."},{"key":"26_CR8","doi-asserted-by":"crossref","unstructured":"D\u00fc\u011fnci, M., Aydin, M.E.: A honeybees-inspired heuristic algorithm for numerical optimisation. Neural Comput. Appl. 1-15 (2019)","DOI":"10.1007\/s00521-019-04533-x"},{"issue":"1","key":"26_CR9","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/j.artmed.2011.02.001","volume":"52","author":"DC Li","year":"2011","unstructured":"Li, D.C., Liu, C.W., Hu, S.C.: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52(1), 45\u201352 (2011)","journal-title":"Artif. Intell. Med."},{"key":"26_CR10","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1016\/j.neucom.2015.07.138","volume":"184","author":"HL Chen","year":"2016","unstructured":"Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B., Wang, S.J.: An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson\u2019s disease. Neurocomputing 184, 131\u2013144 (2016)","journal-title":"Neurocomputing"},{"issue":"4","key":"26_CR11","doi-asserted-by":"publisher","first-page":"364","DOI":"10.1016\/j.bspc.2013.02.006","volume":"8","author":"WL Zuo","year":"2013","unstructured":"Zuo, W.L., Wang, Z.Y., Liu, T., Chen, H.L.: Effective detection of Parkinson\u2019s disease using an adaptive fuzzy k-nearest neighbor approach. Biomed. Signal Process. Control 8(4), 364\u2013373 (2013)","journal-title":"Biomed. Signal Process. Control"},{"issue":"6","key":"26_CR12","doi-asserted-by":"publisher","first-page":"1108","DOI":"10.1080\/00207721.2013.809613","volume":"46","author":"M G\u00fck","year":"2015","unstructured":"G\u00fck, M.: An ensemble of k-nearest neighbours algorithm for detection of Parkinson\u2019s disease. Int. J. Syst. Sci. 46(6), 1108\u20131112 (2015)","journal-title":"Int. J. Syst. Sci."},{"issue":"4","key":"26_CR13","doi-asserted-by":"publisher","first-page":"828","DOI":"10.1109\/JBHI.2013.2245674","volume":"17","author":"BE Sakar","year":"2013","unstructured":"Sakar, B.E., et al.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inf. 17(4), 828\u2013834 (2013)","journal-title":"IEEE J. Biomed. Health Inf."},{"issue":"1","key":"26_CR14","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1186\/s12938-016-0242-6","volume":"15","author":"H-H Zhang","year":"2016","unstructured":"Zhang, H.-H., et al.: Classification of Parkinson\u2019s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples. BioMed. Eng. OnLine 15(1), 122 (2016)","journal-title":"BioMed. Eng. OnLine"},{"key":"26_CR15","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1016\/j.patrec.2016.04.014","volume":"78","author":"V Abrol","year":"2016","unstructured":"Abrol, V., Sharma, P., Sao, A.K.: Greedy dictionary learning for kernel sparse representation based classifier. Pattern Recogn. Lett. 78, 64\u201369 (2016)","journal-title":"Pattern Recogn. Lett."},{"key":"26_CR16","doi-asserted-by":"crossref","unstructured":"Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Encyclopedia of Database Systems, pp. 532\u2013538, Springer, Berlin (2009)","DOI":"10.1007\/978-0-387-39940-9_565"},{"key":"26_CR17","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1016\/j.asoc.2018.10.022","volume":"74","author":"CO Sakar","year":"2019","unstructured":"Sakar, C.O., et al.: A comparative analysis of speech signal processing algorithms for Parkinson\u2019s disease classification and the use of the tunable Q-factor wavelet transform. Appl. Soft Comput. 74, 255\u2013263 (2019)","journal-title":"Appl. Soft Comput."},{"key":"26_CR18","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1016\/j.neucom.2017.11.077","volume":"300","author":"J Cai","year":"2018","unstructured":"Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70\u201379 (2018)","journal-title":"Neurocomputing"},{"issue":"5","key":"26_CR19","doi-asserted-by":"publisher","first-page":"525","DOI":"10.1016\/j.patrec.2008.11.012","volume":"30","author":"SC Yusta","year":"2009","unstructured":"Yusta, S.C.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recogn. Lett. 30(5), 525\u2013534 (2009)","journal-title":"Pattern Recogn. Lett."},{"key":"26_CR20","doi-asserted-by":"publisher","first-page":"100663","DOI":"10.1016\/j.swevo.2020.100663","volume":"54","author":"BH Nguyen","year":"2020","unstructured":"Nguyen, B.H., Xue, B., Zhang, M.: A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol. Comput. 54, 100663 (2020)","journal-title":"Swarm Evol. Comput."},{"issue":"3","key":"26_CR21","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1007\/s10898-007-9149-x","volume":"39","author":"D Karaboga","year":"2007","unstructured":"Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459\u2013471 (2007)","journal-title":"J. Glob. Optim."},{"issue":"1","key":"26_CR22","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/s10462-012-9328-0","volume":"42","author":"D Karaboga","year":"2014","unstructured":"Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21\u201357 (2014)","journal-title":"Artif. Intell. Rev."},{"key":"26_CR23","doi-asserted-by":"publisher","first-page":"2307","DOI":"10.3906\/elk-1203-104","volume":"21","author":"MS Kiran","year":"2013","unstructured":"Kiran, M.S., Gunduz, M.: XOR-based artificial bee colony algorithm for binary optimization. Turk. J. Electr. Eng. Comput. Sci. 21, 2307\u20132328 (2013)","journal-title":"Turk. J. Electr. Eng. Comput. Sci."},{"issue":"1","key":"26_CR24","doi-asserted-by":"publisher","first-page":"342","DOI":"10.1016\/j.asoc.2011.08.038","volume":"12","author":"MH Kashan","year":"2012","unstructured":"Kashan, M.H., Nahavandi, N., Kashan, A.H.: DisABC: A new artificial bee colony algorithm for binary optimization. Appl. Soft Comput. 12(1), 342\u2013352 (2012)","journal-title":"Appl. Soft Comput."},{"key":"26_CR25","unstructured":"Durgut, R.: Improved binary artificial bee colony algorithm. arXiv preprint arXiv:2003.11641"},{"key":"26_CR26","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1016\/j.future.2019.03.032","volume":"98","author":"CJ Santana","year":"2019","unstructured":"Santana, C.J., Macedo, M., Siqueira, H., Gokhale, A., Bastos-Filho, C.J.A.: A novel binary artificial bee colony algorithm. Future Gener. Comput. Syst. 98, 180\u2013196 (2019)","journal-title":"Future Gener. Comput. Syst."},{"key":"26_CR27","doi-asserted-by":"crossref","unstructured":"Altay, E. V., Alatas, B. : Multi-objective association analysis of Parkinson disease with intelligent optimization algorithms. In: Proceedings of the 1st International Informatics and Software Engineering Conference (UBMYK), pp. 1\u20136, Ankara, Turkey (2019)","DOI":"10.1109\/UBMYK48245.2019.8965636"},{"key":"26_CR28","unstructured":"Badem, H., Turkusagi, D., Caliskan, A., \u00c7il, Z.A.: Feature selection based on artificial bee colony for Parkinson disease diagnosis. In: Medical Technologies Congress (TIPTEKNO), \u0130zmir. Turkey 2019, 1\u20134 (2019)"},{"key":"26_CR29","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.apacoust.2019.05.019","volume":"155","author":"T Tuncer","year":"2019","unstructured":"Tuncer, T., Dogan, S.: A novel octopus based Parkinson\u2019s disease and gender recognition method using vowels. Appl. Acoust. 155, 75\u201383 (2019)","journal-title":"Appl. Acoust."},{"key":"26_CR30","doi-asserted-by":"crossref","unstructured":"Castro, C., Vargas-Viveros, E., Sanchez, A., Gutierrez-Lopez, E., Flores, D.L.: Parkinson\u2019s disease classification using artificial neural networks. In: VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering, Cancun, Mexico, pp. 1060\u20131065 (2020)","DOI":"10.1007\/978-3-030-30648-9_137"},{"issue":"1","key":"26_CR31","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1016\/j.bbe.2019.05.006","volume":"40","author":"T Tuncer","year":"2020","unstructured":"Tuncer, T., Dogan, S., Acharya, U.R.: Automated detection of Parkinson\u2019s disease using minimum average maximum tree and singular value decomposition method with vowels. Biocybern. Biomed. Eng. 40(1), 211\u2013220 (2020)","journal-title":"Biocybern. Biomed. Eng."}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,3,17]],"date-time":"2021-03-17T08:02:33Z","timestamp":1615968153000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_26","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}