{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T10:24:21Z","timestamp":1743071061659,"version":"3.40.3"},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_21","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:02:52Z","timestamp":1590588172000},"page":"274-291","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Large-Scale Geospatial Data Analysis: Geographic Object-Based Scene Classification in Remote Sensing Images by GIS and Deep Residual Learning"],"prefix":"10.1007","author":[{"given":"Konstantinos","family":"Demertzis","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6404-1528","authenticated-orcid":false,"given":"Lazaros","family":"Iliadis","sequence":"additional","affiliation":[]},{"given":"Elias","family":"Pimenidis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"key":"21_CR1","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1109\/MSP.2011.940409","volume":"28","author":"A Plaza","year":"2011","unstructured":"Plaza, A., Plaza, J., Paz, A., Sanchez, S.: Parallel hyperspectral image and signal processing. IEEE Sign. Process. Mag. 28, 119\u2013126 (2011)","journal-title":"IEEE Sign. Process. Mag."},{"key":"21_CR2","doi-asserted-by":"publisher","first-page":"784","DOI":"10.1109\/JPROC.2012.2232891","volume":"101","author":"MJ Hubert","year":"2013","unstructured":"Hubert, M.J., Carole, E.: Airborne SAR-efficient signal processing for very high resolution. Proc. IEEE 101, 784\u2013797 (2013)","journal-title":"Proc. IEEE"},{"issue":"5","key":"21_CR3","doi-asserted-by":"publisher","first-page":"494","DOI":"10.3390\/rs11050494","volume":"11","author":"W Zhang","year":"2019","unstructured":"Zhang, W., Tang, P., Zhao, L.: Remote sensing image scene classification using CNN-CapsNet. Remote Sens. MDPI 11(5), 494 (2019). https:\/\/doi.org\/10.3390\/rs11050494","journal-title":"Remote Sens. MDPI"},{"doi-asserted-by":"crossref","unstructured":"Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, pp. 270\u2013279 (2010)","key":"21_CR4","DOI":"10.1145\/1869790.1869829"},{"doi-asserted-by":"crossref","unstructured":"Penatti, O.A., Nogueira, K., dos Santos, J. A.: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, pp. 44\u201351 (2015)","key":"21_CR5","DOI":"10.1109\/CVPRW.2015.7301382"},{"key":"21_CR6","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","volume":"61","author":"J Schmidhuber","year":"2015","unstructured":"Schmidhuber, J.: Deep learning in neural networks: an overview. Neu. Netw. 61, 85\u2013117 (2015)","journal-title":"Neu. Netw."},{"key":"21_CR7","volume-title":"Gradient Flow in Recurrent Nets: The Difficulty Of Learning Long-term Dependencies","author":"S Hochreiter","year":"2001","unstructured":"Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient Flow in Recurrent Nets: The Difficulty Of Learning Long-term Dependencies. IEEE Press, New York (2001)"},{"unstructured":"Kolen, J.F., Kremer, S.C.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: A Field Guide to Dynamical Recurrent Networks, pp. 237\u2013243. IEEE, (2001)","key":"21_CR8"},{"unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). arXiv:1512.03385","key":"21_CR9"},{"key":"21_CR10","volume-title":"Deep Learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)"},{"issue":"6","key":"21_CR11","doi-asserted-by":"publisher","first-page":"2094","DOI":"10.1109\/JSTARS.2014.2329330","volume":"7","author":"Y Chen","year":"2014","unstructured":"Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Appl. Earth Obs. Remote Sens. 7(6), 2094\u20132107 (2014)","journal-title":"IEEE J. Appl. Earth Obs. Remote Sens."},{"issue":"6","key":"21_CR12","first-page":"2381","volume":"8","author":"C Tao","year":"2015","unstructured":"Tao, C., Pan, H., Li, Y., Zou, Z.: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Explore Geosci. Remote Sens. 8(6), 2381\u20132392 (2015)","journal-title":"IEEE Explore Geosci. Remote Sens."},{"issue":"5","key":"21_CR13","doi-asserted-by":"publisher","first-page":"778","DOI":"10.1109\/LGRS.2017.2681128","volume":"14","author":"N Kussul","year":"2017","unstructured":"Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A.: Deep learning classification of land cover and crop types using remote sensing data. IEEE Explore Geosci. Remote Sens. 14(5), 778\u2013782 (2017)","journal-title":"IEEE Explore Geosci. Remote Sens."},{"doi-asserted-by":"crossref","unstructured":"Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Geoscience & Remote Sensing (2015)","key":"21_CR14","DOI":"10.1109\/IGARSS.2015.7326945"},{"issue":"10","key":"21_CR15","doi-asserted-by":"publisher","first-page":"6232","DOI":"10.1109\/TGRS.2016.2584107","volume":"54","author":"Y Chen","year":"2016","unstructured":"Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on CNN. IEEE Trans. Geosci. Remote Sens. 54(10), 6232\u20136251 (2016)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"21_CR16","doi-asserted-by":"publisher","first-page":"1349","DOI":"10.1109\/TGRS.2015.2478379","volume":"54","author":"A Romero","year":"2016","unstructured":"Romero, A., Gatta, C., Camps-Valls, G.: Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54(3), 1349\u20131362 (2016)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"7","key":"21_CR17","doi-asserted-by":"publisher","first-page":"3639","DOI":"10.1109\/TGRS.2016.2636241","volume":"55","author":"L Mou","year":"2017","unstructured":"Mou, L., Ghamisi, P., Zhu, X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639\u20133655 (2017)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"21_CR18","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1109\/TGRS.2017.2748160","volume":"56","author":"L Mou","year":"2018","unstructured":"Mou, L., Ghamisi, P., Zhu, X.: Unsupervised spectral-spatial feature learning via deep residual conv\u2013deconv network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(1), 391\u2013406 (2018)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"unstructured":"Glorot X., Bengio Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings International Conference Artificial Intelligence Statistics, pp. 249\u2013256 (2010)","key":"21_CR19"},{"unstructured":"Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic bound of learning rate (2019). arXiv:1902.09843","key":"21_CR20"},{"unstructured":"Grana, M., Veganzons, M.A., Ayerdi, B.: Hyperspectral remote sensing scenes (2020). http:\/\/www.ehu.eus\/ccwintco\/index.php\/Hyperspectral_Remote_Sensing_Scenes . Grupo De Inteligencia, Computacional","key":"21_CR21"},{"key":"21_CR22","doi-asserted-by":"publisher","first-page":"861","DOI":"10.1016\/j.patrec.2005.10.010","volume":"27","author":"T Fawcett","year":"2006","unstructured":"Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861\u2013874 (2006)","journal-title":"Pattern Recogn. Lett."},{"key":"21_CR23","doi-asserted-by":"publisher","first-page":"413","DOI":"10.1002\/0471249688","volume-title":"Categorical Data Analysis","author":"A Agresti","year":"2002","unstructured":"Agresti, A.: Categorical Data Analysis, p. 413. Wiley, Hoboken (2002). ISBN 978-0-471-36093-3"},{"key":"21_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2015\/258619","volume":"2015","author":"Wei Hu","year":"2015","unstructured":"Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. S.I. Deep Learn. Remote Sens. Image Underst., art. no. 258619 (2015)","journal-title":"Journal of Sensors"},{"doi-asserted-by":"crossref","unstructured":"Dosovitskiy, A., Springenberg, J. T., Brox, T.: Learning to generate chairs, tables and cars with convolutional networks. In: Proceedings IEEE Conference Computer Vision Pattern Recognition, pp. 1538\u20131546 (2015)","key":"21_CR25","DOI":"10.1109\/CVPR.2015.7298761"},{"issue":"9","key":"21_CR26","doi-asserted-by":"publisher","first-page":"1734","DOI":"10.1109\/TPAMI.2015.2496141","volume":"38","author":"A Dosovitskiy","year":"2016","unstructured":"Dosovitskiy, A., Fischer, P., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1734\u20131747 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"21_CR27","first-page":"333","volume-title":"Advances in Big Data","author":"Konstantinos Demertzis","year":"2016","unstructured":"Demertzis, K., Iliadis, L.: Adaptive elitist differential evolution extreme learning machines on big data: intelligent recognition of invasive species. In: Proceedings of the INNS Conference Advances in Big Data, Advances in Intelligent Systems and Computing, vol. 529. Springer, Heidelberg (2016)"},{"doi-asserted-by":"crossref","unstructured":"Demertzis, K., Iliadis, L., Anezakis, V.: A deep spiking machine-hearing system for the case of invasive fish species. In: Proceedings IEEE-SMC Innovations in Intelligent Systems & Applications (INISTA), pp. 23\u201328 (2017)","key":"21_CR28","DOI":"10.1109\/INISTA.2017.8001126"},{"key":"21_CR29","doi-asserted-by":"publisher","first-page":"6","DOI":"10.3390\/bdcc3010006","volume":"3","author":"K Demertzis","year":"2019","unstructured":"Demertzis, K., Tziritas, N., Kikiras, P., Sanchez, S.L., Iliadis, L.: The next generation cognitive security operations center: adaptive analytic lambda architecture for efficient defense against adversarial attacks. Big Data Cogn. Comput. 3, 6 (2019). https:\/\/doi.org\/10.3390\/bdcc3010006","journal-title":"Big Data Cogn. Comput."},{"doi-asserted-by":"crossref","unstructured":"Demertzis, K., Iliadis, L.S., Anezakis, V.D.: Extreme deep learning in biosecurity: the case of machine hearing for marine species identification. J. Inf. Telecommun., 1\u201319 (2018). Taylor & Francis","key":"21_CR30","DOI":"10.1080\/24751839.2018.1501542"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_21","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,25]],"date-time":"2022-10-25T04:29:27Z","timestamp":1666672167000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_21"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_21","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}