{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:48Z","timestamp":1726085088034},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_17","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:02:52Z","timestamp":1590588172000},"page":"227-239","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Novel Spatial-Spectral Framework for the Classification of Hyperspectral Satellite Imagery"],"prefix":"10.1007","author":[{"given":"Shriya T. P.","family":"Gupta","sequence":"first","affiliation":[]},{"given":"Sanjay K.","family":"Sahay","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"key":"17_CR1","doi-asserted-by":"publisher","first-page":"53040","DOI":"10.1109\/ACCESS.2019.2912200","volume":"7","author":"A Shrestha","year":"2019","unstructured":"Shrestha, A., Mahmood, A.: Review of deep learning algorithms and architectures. IEEE Access 7, 53040\u201353065 (2019)","journal-title":"IEEE Access"},{"issue":"129","key":"17_CR2","first-page":"6425","volume":"6","author":"A Ahmad","year":"2012","unstructured":"Ahmad, A., Quegan, S.: Analysis of maximum likelihood classification on multispectral data. Appl. Math. Sci. 6(129), 6425\u20136436 (2012)","journal-title":"Appl. Math. Sci."},{"issue":"8","key":"17_CR3","first-page":"2986","volume":"2","author":"R Ablin","year":"2013","unstructured":"Ablin, R., Sulochana, C.H.: A survey of hyperspectral image classification in remote sensing. Int. J. Adv. Res. Comput. Commun. Eng. 2(8), 2986\u20133000 (2013)","journal-title":"Int. J. Adv. Res. Comput. Commun. Eng."},{"key":"17_CR4","doi-asserted-by":"publisher","first-page":"14118","DOI":"10.1109\/ACCESS.2018.2812999","volume":"6","author":"MJ Khan","year":"2018","unstructured":"Khan, M.J., Khan, H.S., Yousaf, A., Khurshid, K., Abbas, A.: Modern trends in hyperspectral image analysis: a review. IEEE Access 6, 14118\u201314129 (2018)","journal-title":"IEEE Access"},{"issue":"7553","key":"17_CR5","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)","journal-title":"Nature"},{"key":"17_CR6","doi-asserted-by":"crossref","unstructured":"Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4959\u20134962. IEEE (2015)","DOI":"10.1109\/IGARSS.2015.7326945"},{"issue":"2","key":"17_CR7","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1109\/MGRS.2019.2912563","volume":"7","author":"N Audebert","year":"2019","unstructured":"Audebert, N., Le Saux, B., Lef\u00e8vre, S.: Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci. Remote Sens. Mag. 7(2), 159\u2013173 (2019)","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"issue":"2","key":"17_CR8","doi-asserted-by":"publisher","first-page":"194","DOI":"10.3390\/rs11020194","volume":"11","author":"A Ma","year":"2019","unstructured":"Ma, A., Filippi, A.M., Wang, Z., Yin, Z.: Hyperspectral image classification using similarity measurements-based deep recurrent neural networks. Remote Sens. 11(2), 194 (2019)","journal-title":"Remote Sens."},{"issue":"8","key":"17_CR9","doi-asserted-by":"publisher","first-page":"2973","DOI":"10.1109\/TGRS.2009.2016214","volume":"47","author":"Y Tarabalka","year":"2009","unstructured":"Tarabalka, Y., Benediktsson, J.A., Chanussot, J.: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47(8), 2973\u20132987 (2009)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"2","key":"17_CR10","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1049\/iet-ipr.2018.5727","volume":"13","author":"C Qing","year":"2018","unstructured":"Qing, C., Ruan, J., Xu, X., Ren, J., Zabalza, J.: Spatial-spectral classification of hyperspectral images: a deep learning framework with markov random fields based modelling. IET Image Process. 13(2), 235\u2013245 (2018)","journal-title":"IET Image Process."},{"key":"17_CR11","unstructured":"Landgrebe, D., Biehl, K.: Aviris nw indiana\u2019s indian pines data set (1992). \nhttps:\/\/engineering.purdue.edu\/~biehl\/MultiSpec\/hyperspectral.html"},{"key":"17_CR12","unstructured":"Gamba, P.: Pavia university scene (2001). \nhttp:\/\/www.ehu.eus\/ccwintco\/index.php\/"},{"issue":"1","key":"17_CR13","doi-asserted-by":"publisher","first-page":"67","DOI":"10.3390\/rs9010067","volume":"9","author":"Y Li","year":"2017","unstructured":"Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)","journal-title":"Remote Sens."},{"issue":"5","key":"17_CR14","doi-asserted-by":"publisher","first-page":"2354","DOI":"10.1109\/TIP.2018.2799324","volume":"27","author":"X Cao","year":"2018","unstructured":"Cao, X., Zhou, F., Xu, L., Meng, D., Xu, Z., Paisley, J.: Hyperspectral image classification with markov random fields and a convolutional neural network. IEEE Trans. Image Process. 27(5), 2354\u20132367 (2018)","journal-title":"IEEE Trans. Image Process."}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:09:14Z","timestamp":1590588554000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_17","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}