{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:48Z","timestamp":1726085088210},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_14","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:02:52Z","timestamp":1590588172000},"page":"190-201","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Towards a Digital Twin with Generative Adversarial Network Modelling of Machining Vibration"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5135-1543","authenticated-orcid":false,"given":"Evgeny","family":"Zotov","sequence":"first","affiliation":[]},{"given":"Ashutosh","family":"Tiwari","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4243-2501","authenticated-orcid":false,"given":"Visakan","family":"Kadirkamanathan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"key":"14_CR1","unstructured":"Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). \nhttp:\/\/arxiv.org\/abs\/1701.07875"},{"key":"14_CR2","unstructured":"Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis (2018). \nhttp:\/\/arxiv.org\/abs\/1809.11096"},{"key":"14_CR3","unstructured":"Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets (2016). \nhttp:\/\/arxiv.org\/abs\/1606.03657"},{"key":"14_CR4","unstructured":"Donahue, C., McAuley, J., Puckette, M.: Adversarial audio synthesis (2018). \nhttp:\/\/arxiv.org\/abs\/1802.04208"},{"key":"14_CR5","unstructured":"Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks (2014). \nhttp:\/\/arxiv.org\/abs\/1406.2661"},{"key":"14_CR6","unstructured":"Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs (2017). \nhttp:\/\/arxiv.org\/abs\/1704.00028"},{"key":"14_CR7","unstructured":"Henning, K., Wolfgang, W., Johannes, H.: Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Technical Report, April (2013)"},{"key":"14_CR8","unstructured":"Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization (2017). \nhttp:\/\/arxiv.org\/abs\/1703.06868"},{"key":"14_CR9","unstructured":"Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation (2017). \nhttp:\/\/arxiv.org\/abs\/1710.10196"},{"key":"14_CR10","unstructured":"Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks (2018). \nhttp:\/\/arxiv.org\/abs\/1812.04948"},{"key":"14_CR11","unstructured":"Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). \nhttp:\/\/arxiv.org\/abs\/1411.1784"},{"key":"14_CR12","first-page":"185","volume":"1507","author":"O Niggemann","year":"2015","unstructured":"Niggemann, O., Biswas, G., Kinnebrew, J.S., Khorasgani, H., Volgmann, S., Bunte, A.: Data-driven monitoring of cyber-physical systems leveraging on big data and the internet-of-things for diagnosis and control. CEUR Workshop Proc. 1507, 185\u2013192 (2015)","journal-title":"CEUR Workshop Proc."},{"key":"14_CR13","unstructured":"Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). \nhttp:\/\/arxiv.org\/abs\/1511.06434"},{"key":"14_CR14","unstructured":"Saatchi, Y., Wilson, A.G.: Bayesian GAN (2017). \nhttp:\/\/arxiv.org\/abs\/1705.09558"},{"key":"14_CR15","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-93707-6","volume-title":"Machining Dynamics","author":"Tony L. Schmitz","year":"2019","unstructured":"Schmitz, T.L., Smith, K.S.: Machining Dynamics. Springer, Cham (2019). \nhttps:\/\/doi.org\/10.1007\/978-3-319-93707-6"},{"key":"14_CR16","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1007\/978-3-319-71249-9_8","volume-title":"Machine Learning and Knowledge Discovery in Databases","author":"Adrian Spurr","year":"2017","unstructured":"Spurr, A., Aksan, E., Hilliges, O.: Guiding InfoGAN with semi-supervision. In: Ceci, M., Hollm\u00e9n, J., Todorovski, L., Vens, C., D\u017eeroski, S. (eds.) Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, pp. 119\u2013134. Springer, Cham (2017)"},{"issue":"9\u201312","key":"14_CR17","doi-asserted-by":"publisher","first-page":"3563","DOI":"10.1007\/s00170-017-0233-1","volume":"94","author":"F Tao","year":"2018","unstructured":"Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94(9\u201312), 3563\u20133576 (2018)","journal-title":"Int. J. Adv. Manuf. Technol."},{"issue":"3","key":"14_CR18","doi-asserted-by":"publisher","first-page":"326","DOI":"10.1001\/jamainternmed.2016.8245","volume":"177","author":"Ben Green","year":"2017","unstructured":"Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient (2016). \nhttps:\/\/doi.org\/10.1001\/jamainternmed.2016.8245","journal-title":"JAMA Internal Medicine"},{"key":"14_CR19","doi-asserted-by":"crossref","unstructured":"Zhang, H., Xu, T., Li, H.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), vol. 2017-Octob, pp. 5908\u20135916. IEEE (2017)","DOI":"10.1109\/ICCV.2017.629"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:09:43Z","timestamp":1590588583000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_14","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}