{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:04:41Z","timestamp":1726085081142},"publisher-location":"Cham","reference-count":34,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_13","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T14:02:52Z","timestamp":1590588172000},"page":"179-189","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Semantic Segmentation Based on Convolution Neural Network for Steel Strip Position Estimation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9898-6370","authenticated-orcid":false,"given":"Aline","family":"de Faria Lemos","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8489-7200","authenticated-orcid":false,"given":"B\u00e1lazs Vince","family":"Nagy","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"issue":"5","key":"13_CR1","doi-asserted-by":"publisher","first-page":"1516","DOI":"10.3390\/s20051516","volume":"20","author":"S Almotairi","year":"2020","unstructured":"Almotairi, S., Kareem, G., Aouf, M., Almutairi, B., Salem, M.A.M.: Liver tumor segmentation in CT scans using modified segnet. Sensors 20(5), 1516 (2020)","journal-title":"Sensors"},{"issue":"12","key":"13_CR2","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","volume":"39","author":"V Badrinarayanan","year":"2017","unstructured":"Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481\u20132495 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"13_CR3","doi-asserted-by":"publisher","first-page":"4392","DOI":"10.1109\/TIE.2017.2764844","volume":"65","author":"FC Chen","year":"2017","unstructured":"Chen, F.C., Jahanshahi, M.R.: NB-CNN: deep learning-based crack detection using convolutional neural network and na\u00efve bayes data fusion. IEEE Trans. Industr. Electron. 65(5), 4392\u20134400 (2017)","journal-title":"IEEE Trans. Industr. Electron."},{"key":"13_CR4","doi-asserted-by":"crossref","unstructured":"Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213\u20133223 (2016)","DOI":"10.1109\/CVPR.2016.350"},{"issue":"1","key":"13_CR5","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1017\/S1431927618015635","volume":"25","author":"BL DeCost","year":"2019","unstructured":"DeCost, B.L., Lei, B., Francis, T., Holm, E.A.: High throughput quantitative metallography for complex microstructures using deep learning: a case study in ultrahigh carbon steel. Microsc. Microanal. 25(1), 21\u201329 (2019)","journal-title":"Microsc. Microanal."},{"key":"13_CR6","doi-asserted-by":"crossref","unstructured":"Ess, A., M\u00fcller, T., Grabner, H., Van\u00a0Gool, L.J.: Segmentation-based urban traffic scene understanding. In: BMVC, vol. 1, p. 2. Citeseer (2009)","DOI":"10.5244\/C.23.84"},{"key":"13_CR7","doi-asserted-by":"crossref","unstructured":"de Faria Lemos, A., da Silva, L.A.R., Furtado, E.C., de Paula, H.: Positioning error estimation of steel strips in steckel rolling process using digital image processing. In: 2017 IEEE Industry Applications Society Annual Meeting, pp. 1\u20138. IEEE (2017)","DOI":"10.1109\/IAS.2017.8101825"},{"key":"13_CR8","doi-asserted-by":"crossref","unstructured":"Ferguson, M., Ak, R., Lee, Y.T.T., Law, K.H.: Automatic localization of casting defects with convolutional neural networks. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1726\u20131735. IEEE (2017)","DOI":"10.1109\/BigData.2017.8258115"},{"key":"13_CR9","unstructured":"Ferreira, A.B.S.: Adaptive fuzzy logic steering controller for a Steckel mill. Ph.D. thesis, University of Johannesburg (2005)"},{"key":"13_CR10","doi-asserted-by":"crossref","unstructured":"Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354\u20133361. IEEE (2012)","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"13_CR11","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580\u2013587 (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"13_CR12","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1016\/j.cogsys.2018.03.002","volume":"53","author":"DT Hoang","year":"2019","unstructured":"Hoang, D.T., Kang, H.J.: Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 53, 42\u201350 (2019)","journal-title":"Cogn. Syst. Res."},{"key":"13_CR13","doi-asserted-by":"crossref","unstructured":"Hong, S., Oh, J., Lee, H., Han, B.: Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3204\u20133212 (2016)","DOI":"10.1109\/CVPR.2016.349"},{"key":"13_CR14","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1016\/j.jsv.2016.05.027","volume":"377","author":"O Janssens","year":"2016","unstructured":"Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Van de Walle, R., Van Hoecke, S.: Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377, 331\u2013345 (2016)","journal-title":"J. Sound Vib."},{"issue":"4","key":"13_CR15","doi-asserted-by":"publisher","first-page":"206","DOI":"10.3103\/S0967091213040062","volume":"43","author":"YV Konovalov","year":"2013","unstructured":"Konovalov, Y.V., Khokhlov, A.: Benefits of steckel mills in rolling. Steel Transl. 43(4), 206\u2013211 (2013)","journal-title":"Steel Transl."},{"issue":"17","key":"13_CR16","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1016\/j.ifacol.2015.10.075","volume":"48","author":"W Kwon","year":"2015","unstructured":"Kwon, W., Kim, S., Won, S.: Active disturbance rejection control for strip steering control in hot strip finishing mill. IFAC-PapersOnLine 48(17), 42\u201347 (2015)","journal-title":"IFAC-PapersOnLine"},{"key":"13_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.knosys.2017.06.017","volume":"132","author":"SJ Lee","year":"2017","unstructured":"Lee, S.J., Yun, J.P., Koo, G., Kim, S.W.: End-to-end recognition of slab identification numbers using a deep convolutional neural network. Knowl.-Based Syst. 132, 1\u201310 (2017)","journal-title":"Knowl.-Based Syst."},{"key":"13_CR18","doi-asserted-by":"crossref","unstructured":"Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925\u20131934 (2017)","DOI":"10.1109\/CVPR.2017.549"},{"key":"13_CR19","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431\u20133440 (2015)","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"13_CR20","doi-asserted-by":"crossref","unstructured":"Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., Fricout, G.: Steel defect classification with max-pooling convolutional neural networks. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20136. IEEE (2012)","DOI":"10.1109\/IJCNN.2012.6252468"},{"issue":"1","key":"13_CR21","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1146\/annurev.bioeng.2.1.315","volume":"2","author":"DL Pham","year":"2000","unstructured":"Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1), 315\u2013337 (2000)","journal-title":"Annu. Rev. Biomed. Eng."},{"key":"13_CR22","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1016\/j.neunet.2020.02.006","volume":"125","author":"EA Rashed","year":"2020","unstructured":"Rashed, E.A., Gomez-Tames, J., Hirata, A.: End-to-end semantic segmentation of personalized deep brain structures for non-invasive brain stimulation. Neural Netw. 125, 233\u2013245 (2020)","journal-title":"Neural Netw."},{"issue":"1","key":"13_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-018-37186-2","volume":"9","author":"G Roberts","year":"2019","unstructured":"Roberts, G., Haile, S.Y., Sainju, R., Edwards, D.J., Hutchinson, B., Zhu, Y.: Deep learning for semantic segmentation of defects in advanced stem images of steels. Sci. Rep. 9(1), 1\u201312 (2019)","journal-title":"Sci. Rep."},{"issue":"11","key":"13_CR24","doi-asserted-by":"publisher","first-page":"4181","DOI":"10.1109\/JSEN.2019.2898634","volume":"19","author":"M Sadoughi","year":"2019","unstructured":"Sadoughi, M., Hu, C.: Physics-based convolutional neural network for fault diagnosis of rolling element bearings. IEEE Sens. J. 19(11), 4181\u20134192 (2019)","journal-title":"IEEE Sens. J."},{"key":"13_CR25","doi-asserted-by":"crossref","unstructured":"Sevak, J.S., Kapadia, A.D., Chavda, J.B., Shah, A., Rahevar, M.: Survey on semantic image segmentation techniques. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS), pp. 306\u2013313. IEEE (2017)","DOI":"10.1109\/ISS1.2017.8389420"},{"key":"13_CR26","doi-asserted-by":"crossref","unstructured":"Soukup, D., Huber-M\u00f6rk, R.: Convolutional neural networks for steel surface defect detection from photometric stereo images. In: International Symposium on Visual Computing, pp. 668\u2013677. Springer (2014)","DOI":"10.1007\/978-3-319-14249-4_64"},{"key":"13_CR27","unstructured":"Treml, M., Arjona-Medina, J., Unterthiner, T., Durgesh, R., Friedmann, F., Schuberth, P., Mayr, A., Heusel, M., Hofmarcher, M., Widrich, M., et al.: Speeding up semantic segmentation for autonomous driving. In: MLITS, NIPS Workshop, vol. 2, p. 7 (2016)"},{"key":"13_CR28","unstructured":"Wei, Y., Chang-Qing, S., Xiao-Jie, G., Zhong-Kui, Z.: Bearing fault diagnosis using convolution neural network and support vector regression. In: DEStech Transactions on Engineering and Technology Research (ICMECA) (2017)"},{"key":"13_CR29","doi-asserted-by":"crossref","unstructured":"Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369\u20131378 (2017)","DOI":"10.1109\/ICCV.2017.153"},{"key":"13_CR30","doi-asserted-by":"publisher","first-page":"47068","DOI":"10.1109\/ACCESS.2019.2909586","volume":"7","author":"ZW Xu","year":"2019","unstructured":"Xu, Z.W., Liu, X.M., Zhang, K.: Mechanical properties prediction for hot rolled alloy steel using convolutional neural network. IEEE Access 7, 47068\u201347078 (2019)","journal-title":"IEEE Access"},{"key":"13_CR31","doi-asserted-by":"crossref","unstructured":"Yang, S.S., He, Y.H., Wang, Z.L., Zhao, W.S.: A method of steel strip image segmentation based on local gray information. In: 2008 IEEE International Conference on Industrial Technology, pp. 1\u20134. IEEE (2008)","DOI":"10.1109\/ICIT.2008.4608646"},{"key":"13_CR32","doi-asserted-by":"crossref","unstructured":"Youkachen, S., Ruchanurucks, M., Phatrapomnant, T., Kaneko, H.: Defect segmentation of hot-rolled steel strip surface by using convolutional auto-encoder and conventional image processing. In: 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), pp. 1\u20135. IEEE (2019)","DOI":"10.1109\/ICTEmSys.2019.8695928"},{"key":"13_CR33","doi-asserted-by":"publisher","first-page":"439","DOI":"10.1016\/j.ymssp.2017.06.022","volume":"100","author":"W Zhang","year":"2018","unstructured":"Zhang, W., Li, C., Peng, G., Chen, Y., Zhang, Z.: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 100, 439\u2013453 (2018)","journal-title":"Mech. Syst. Signal Process."},{"key":"13_CR34","doi-asserted-by":"publisher","first-page":"105395","DOI":"10.1016\/j.cmpb.2020.105395","volume":"192","author":"Z Zhang","year":"2020","unstructured":"Zhang, Z., Wu, C., Coleman, S., Kerr, D.: DENSE-inception U-net for medical image segmentation. Comput. Methods Programs Biomed. 192, 105395 (2020)","journal-title":"Comput. Methods Programs Biomed."}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,6,26]],"date-time":"2020-06-26T16:26:54Z","timestamp":1593188814000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_13","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}