{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:50:59Z","timestamp":1726408259456},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030487904"},{"type":"electronic","value":"9783030487911"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-48791-1_10","type":"book-chapter","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T10:02:52Z","timestamp":1590573772000},"page":"143-154","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Predicting Permeability Based on Core Analysis"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9500-4906","authenticated-orcid":false,"given":"Harry","family":"Kontopoulos","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1389-3886","authenticated-orcid":false,"given":"Hatem","family":"Ahriz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8342-9026","authenticated-orcid":false,"given":"Eyad","family":"Elyan","sequence":"additional","affiliation":[]},{"given":"Richard","family":"Arnold","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,28]]},"reference":[{"key":"10_CR1","volume-title":"Classification and Regression Trees","author":"L Breiman","year":"1984","unstructured":"Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Taylor & Francis, Monterey (1984)"},{"key":"10_CR2","unstructured":"Brian Ripley: tree: Classification and Regression Trees (2019). https:\/\/CRAN.R-project.org\/package=tree . r package version 1.0-40"},{"issue":"2","key":"10_CR3","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1023\/A:1009715923555","volume":"2","author":"CJ Burges","year":"1998","unstructured":"Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121\u2013167 (1998). https:\/\/doi.org\/10.1023\/A:1009715923555","journal-title":"Data Min. Knowl. Disc."},{"key":"10_CR4","unstructured":"Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 155\u2013161. MIT Press (1997). http:\/\/papers.nips.cc\/paper\/1238-support-vector-regression-machines.pdf"},{"issue":"2","key":"10_CR5","doi-asserted-by":"publisher","first-page":"677","DOI":"10.1007\/s11242-019-01265-3","volume":"128","author":"A Erofeev","year":"2019","unstructured":"Erofeev, A., Orlov, D., Ryzhov, A., Koroteev, D.: Prediction of porosity and permeability alteration based on machine learning algorithms. Transp. Porous Media 128(2), 677\u2013700 (2019). https:\/\/doi.org\/10.1007\/s11242-019-01265-3","journal-title":"Transp. Porous Media"},{"key":"10_CR6","unstructured":"Francis, J.G.F.: Comput. J., 265\u2013271 (1961). https:\/\/academic.oup.com\/comjnl\/article\/4\/3\/265\/380632"},{"issue":"1","key":"10_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v033.i01","volume":"33","author":"JH Friedman","year":"2010","unstructured":"Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1\u201322 (2010). https:\/\/www.jstatsoft.org\/index.php\/jss\/article\/view\/v033i01","journal-title":"J. Stat. Softw."},{"key":"10_CR8","unstructured":"Fritsch, S., Guenther, F., Wright, M.N.: neuralnet: Training of neural networks (2019). https:\/\/CRAN.R-project.org\/package=neuralnet"},{"key":"10_CR9","unstructured":"Gholami, R., Shahraki, A.R., Jamali Paghaleh, M.: Prediction of hydrocarbon reservoirs permeability using support vector machine (2012). https:\/\/www.hindawi.com\/journals\/mpe\/2012\/670723\/"},{"issue":"C","key":"10_CR10","doi-asserted-by":"publisher","first-page":"643","DOI":"10.1016\/j.petrol.2014.09.007","volume":"122","author":"R Gholami","year":"2014","unstructured":"Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., Hanachi, J.: Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. J. Petrol. Sci. Eng. 122(C), 643\u2013656 (2014). https:\/\/doi.org\/10.1016\/j.petrol.2014.09.007","journal-title":"J. Petrol. Sci. Eng."},{"key":"10_CR11","doi-asserted-by":"publisher","unstructured":"G\u00fcmrah, F., Sarkar, S., Tasti, Y.A., Erbas, D.: Genetic algorithm for predicting permeability during production enhancement by acidizing. Energy Sources 23(3), 245\u2013256 (2001). https:\/\/doi.org\/10.1080\/00908310151133942","DOI":"10.1080\/00908310151133942"},{"key":"10_CR12","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1016\/j.jngse.2017.02.019","volume":"40","author":"C Hegde","year":"2017","unstructured":"Hegde, C., Gray, K.E.: Use of machine learning and data analytics to increase drilling efficiency for nearby wells. J. Nat. Gas Sci. Eng. 40, 327\u2013335 (2017). https:\/\/doi.org\/10.1016\/j.jngse.2017.02.019","journal-title":"J. Nat. Gas Sci. Eng."},{"issue":"1","key":"10_CR13","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1080\/00401706.2000.10485983","volume":"42","author":"AE Hoerl","year":"2000","unstructured":"Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1), 80\u201386 (2000). http:\/\/www.tandfonline.com\/doi\/abs\/10.1080\/00401706.2000.10485983","journal-title":"Technometrics"},{"key":"10_CR14","series-title":"Springer Texts in Statistics","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4614-7138-7","volume-title":"An Introduction to Statistical Learning: with Applications in R","author":"G James","year":"2013","unstructured":"James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer-Verlag, New York (2013). https:\/\/doi.org\/10.1007\/978-1-4614-7138-7 . https:\/\/www.springer.com\/gp\/book\/9781461471370"},{"key":"10_CR15","doi-asserted-by":"publisher","first-page":"326","DOI":"10.1016\/j.jngse.2017.08.007","volume":"46","author":"J Lee","year":"2017","unstructured":"Lee, J., Byun, J., Kim, B., Yoo, D.G.: Delineation of gas hydrate reservoirs in the Ulleung Basin using unsupervised multi-attribute clustering without well log data. J. Nat. Gas Sci. Eng. 46, 326\u2013337 (2017). https:\/\/doi.org\/10.1016\/j.jngse.2017.08.007 . http:\/\/www.sciencedirect.com\/science\/article\/pii\/S1875510017303104","journal-title":"J. Nat. Gas Sci. Eng."},{"key":"10_CR16","series-title":"Developments in Petroleum Science","volume-title":"Core Analysis: A Best Practice Guide","author":"C McPhee","year":"2015","unstructured":"McPhee, C., Reed, J., Zubizarreta, I.: Core Analysis: A Best Practice Guide. Developments in Petroleum Science, vol. 64. Elsevier, Amsterdam (2015)"},{"key":"10_CR17","unstructured":"Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien (2019). https:\/\/CRAN.R-project.org\/package=e1071 . r package version 1.7-3"},{"key":"10_CR18","unstructured":"Ottesen, B., Hjelmeland, O.: The Value Added from Proper Core Analysis, p. 12 (2008)"},{"key":"10_CR19","unstructured":"R Core Team: R: A language and environment for statistical computing (ISBN 3-900051-07-0). R Foundation for Statistical Computing (2019). https:\/\/www.R-project.org\/"},{"issue":"3","key":"10_CR20","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1016\/0920-5489(94)90017-5","volume":"16","author":"M Riedmiller","year":"1994","unstructured":"Riedmiller, M.: Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms. Comput. Stan. Interfaces 16(3), 265\u2013278 (1994). https:\/\/doi.org\/10.1016\/0920-5489(94)90017-5 . https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/0920548994900175","journal-title":"Comput. Stan. Interfaces"},{"key":"10_CR21","doi-asserted-by":"publisher","unstructured":"Shang, C., Barnes, D.: Support vector machine-based classification of rock texture images aided by efficient feature selection. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138, June 2012. https:\/\/doi.org\/10.1109\/IJCNN.2012.6252634","DOI":"10.1109\/IJCNN.2012.6252634"},{"key":"10_CR22","doi-asserted-by":"publisher","unstructured":"Singh, S.: Permeability Prediction Using Artificial Neural Network (ANN): A Case Study of Uinta Basin. Society of Petroleum Engineers (2005). https:\/\/doi.org\/10.2118\/99286-STU . https:\/\/www-onepetro-org.ezproxy.rgu.ac.uk\/conference-paper\/SPE-99286-STU","DOI":"10.2118\/99286-STU"},{"issue":"06","key":"10_CR23","doi-asserted-by":"publisher","first-page":"704","DOI":"10.2118\/18386-PA","volume":"44","author":"J.H. Stiles","year":"1992","unstructured":"Stiles, J.J., Hutfilz, J.: The use of routine and special core analysis in characterizing Brent Group reservoirs, U.K. North Sea. J. Petrol. Technol. (U.S.) 44(6) (1992). https:\/\/doi.org\/10.2118\/18386-PA","journal-title":"Journal of Petroleum Technology"},{"key":"10_CR24","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R Tibshirani","year":"1994","unstructured":"Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58, 267\u2013288 (1994)","journal-title":"J. Roy. Stat. Soc. B"},{"key":"10_CR25","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1016\/B978-0-12-103950-9.50017-4","volume-title":"Quantitative Sociology","author":"HERMAN WOLD","year":"1975","unstructured":"Wold, H.: 11 - Path Models with Latent Variables: The NIPALS Approach**NIPALS = Nonlinear Iterative PArtial Least Squares. In: Blalock, H.M., Aganbegian, A., Borodkin, F.M., Boudon, R., Capecchi, V. (eds.) Quantitative Sociology: International Perspectives on Mathematical and Statistical Modeling, pp. 307\u2013357. Academic Press, January 1975. https:\/\/doi.org\/10.1016\/B978-0-12-103950-9.50017-4 . http:\/\/www.sciencedirect.com\/science\/article\/pii\/B9780121039509500174"},{"issue":"2","key":"10_CR26","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1016\/S0169-7439(01)00152-6","volume":"58","author":"S Wold","year":"2001","unstructured":"Wold, S.: Personal memories of the early PLS development. Chemometrics and Intelligent Laboratory Systems 58(2), 83\u201384 (2001). https:\/\/doi.org\/10.1016\/S0169-7439(01)00152-6 . http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0169743901001526","journal-title":"Chemometrics and Intelligent Laboratory Systems"},{"key":"10_CR27","doi-asserted-by":"publisher","unstructured":"Wong, K.W., Fung, C.C., Ong, Y.S., Gedeon, T.D.: Reservoir characterization using support vector machines. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC 2006), vol. 2, pp. 354\u2013359, November 2005. https:\/\/doi.org\/10.1109\/CIMCA.2005.1631494","DOI":"10.1109\/CIMCA.2005.1631494"}],"container-title":["Proceedings of the International Neural Networks Society","Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-48791-1_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T09:47:09Z","timestamp":1722937629000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-48791-1_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030487904","9783030487911"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-48791-1_10","relation":{},"ISSN":["2661-8141","2661-815X"],"issn-type":[{"type":"print","value":"2661-8141"},{"type":"electronic","value":"2661-815X"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"28 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Halkidiki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.eann2020.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}