{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:49:09Z","timestamp":1726408149582},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030474256"},{"type":"electronic","value":"9783030474263"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-47426-3_25","type":"book-chapter","created":{"date-parts":[[2020,5,8]],"date-time":"2020-05-08T06:02:49Z","timestamp":1588917769000},"page":"318-329","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":28,"title":["Deep Multivariate Time Series Embedding Clustering via Attentive-Gated Autoencoder"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8736-3132","authenticated-orcid":false,"given":"Dino","family":"Ienco","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0536-6277","authenticated-orcid":false,"given":"Roberto","family":"Interdonato","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,5,6]]},"reference":[{"issue":"8","key":"25_CR1","doi-asserted-by":"publisher","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","volume":"35","author":"Y Bengio","year":"2013","unstructured":"Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: a review and new perspectives. IEEE TPAMI 35(8), 1798\u20131828 (2013)","journal-title":"IEEE TPAMI"},{"doi-asserted-by":"crossref","unstructured":"Britz, D., Guan, M.Y., Luong, M.: Efficient attention using a fixed-size memory representation. In: EMNLP, pp. 392\u2013400 (2017)","key":"25_CR2","DOI":"10.18653\/v1\/D17-1040"},{"doi-asserted-by":"crossref","unstructured":"Chandrakala, S., Sekhar, C.C.: A density based method for multivariate time series clustering in kernel feature space. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2008, Part of the IEEE WCCI 2008, Hong Kong, China, 1\u20136 June 2008, pp. 1885\u20131890 (2008)","key":"25_CR3","DOI":"10.1109\/IJCNN.2008.4634055"},{"doi-asserted-by":"crossref","unstructured":"Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP, pp. 1724\u20131734 (2014)","key":"25_CR4","DOI":"10.3115\/v1\/D14-1179"},{"issue":"1","key":"25_CR5","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1007\/s00357-010-9043-y","volume":"27","author":"R Coppi","year":"2010","unstructured":"Coppi, R., D\u2019Urso, P., Giordani, P.: A fuzzy clustering model for multivariate spatial time series. J. Classif. 27(1), 54\u201388 (2010). \nhttps:\/\/doi.org\/10.1007\/s00357-010-9043-y","journal-title":"J. Classif."},{"unstructured":"Cuturi, M., Blondel, M.: Soft-DTW: a differentiable loss function for time-series. In: ICML, pp. 894\u2013903 (2017)","key":"25_CR6"},{"issue":"4","key":"25_CR7","doi-asserted-by":"publisher","first-page":"1074","DOI":"10.1007\/s10618-018-0565-y","volume":"32","author":"HA Dau","year":"2018","unstructured":"Dau, H.A., et al.: Optimizing dynamic time warping\u2019s window width for time series data mining applications. Data Min. Knowl. Discov. 32(4), 1074\u20131120 (2018). \nhttps:\/\/doi.org\/10.1007\/s10618-018-0565-y","journal-title":"Data Min. Knowl. Discov."},{"key":"25_CR8","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.fss.2011.10.002","volume":"193","author":"P D\u2019Urso","year":"2012","unstructured":"D\u2019Urso, P., Maharaj, E.A.: Wavelets-based clustering of multivariate time series. Fuzzy Sets Syst. 193, 33\u201361 (2012)","journal-title":"Fuzzy Sets Syst."},{"doi-asserted-by":"crossref","unstructured":"Hallac, D., Vare, S., Boyd, S.P., Leskovec, J.: Toeplitz inverse covariance-based clustering of multivariate time series data. In: KDD, pp. 215\u2013223 (2017)","key":"25_CR9","DOI":"10.1145\/3097983.3098060"},{"key":"25_CR10","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1016\/j.isprsjprs.2019.01.011","volume":"149","author":"R Interdonato","year":"2019","unstructured":"Interdonato, R., Ienco, D., Gaetano, R., Ose, K.: DuPLO: a dual view point deep learning architecture for time series classification. ISPRS J. Photogramm. Remote Sens. 149, 91\u2013104 (2019)","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"25_CR11","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1016\/j.neunet.2019.04.014","volume":"116","author":"F Karim","year":"2019","unstructured":"Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for time series classification. Neural Netw. 116, 237\u2013245 (2019)","journal-title":"Neural Netw."},{"unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs\/1412.6980 (2014)","key":"25_CR12"},{"issue":"11","key":"25_CR13","doi-asserted-by":"publisher","first-page":"1857","DOI":"10.1016\/j.patcog.2005.01.025","volume":"38","author":"TW Liao","year":"2005","unstructured":"Liao, T.W.: Clustering of time series data - a survey. Pattern Recogn. 38(11), 1857\u20131874 (2005)","journal-title":"Pattern Recogn."},{"key":"25_CR14","doi-asserted-by":"publisher","first-page":"26102","DOI":"10.1109\/ACCESS.2019.2900371","volume":"7","author":"F Liu","year":"2019","unstructured":"Liu, F., Cai, M., Wang, L., Lu, Y.: An ensemble model based on adaptive noise reducer and over-fitting prevention LSTM for multivariate time series forecasting. IEEE Access 7, 26102\u201326115 (2019)","journal-title":"IEEE Access"},{"issue":"4","key":"25_CR15","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","volume":"17","author":"U von Luxburg","year":"2007","unstructured":"von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395\u2013416 (2007). \nhttps:\/\/doi.org\/10.1007\/s11222-007-9033-z","journal-title":"Stat. Comput."},{"key":"25_CR16","first-page":"2579","volume":"9","author":"L van der Maaten","year":"2008","unstructured":"van der Maaten, L., Hinton, G.: Visualizing data Using t-SNE. J. Mach. Learn. Res. 9, 2579\u20132605 (2008)","journal-title":"J. Mach. Learn. Res."},{"key":"25_CR17","doi-asserted-by":"publisher","first-page":"39501","DOI":"10.1109\/ACCESS.2018.2855437","volume":"6","author":"E Min","year":"2018","unstructured":"Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 6, 39501\u201339514 (2018)","journal-title":"IEEE Access"},{"doi-asserted-by":"crossref","unstructured":"Ravanelli, M., Brakel, P., Omologo, M., Bengio, Y.: Improving speech recognition by revising gated recurrent units. In: Interspeech, pp. 1308\u20131312 (2017)","key":"25_CR18","DOI":"10.21437\/Interspeech.2017-775"},{"doi-asserted-by":"publisher","unstructured":"Shih, S.-Y., Sun, F.-K., Lee, H.Y.: Temporal pattern attention for multivariate time series forecasting. Mach. Learn. 1421\u20131441 (2019). \nhttps:\/\/doi.org\/10.1007\/s10994-019-05815-0","key":"25_CR19","DOI":"10.1007\/s10994-019-05815-0"},{"key":"25_CR20","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.neucom.2018.07.092","volume":"353","author":"RL Talavera-Llames","year":"2019","unstructured":"Talavera-Llames, R.L., P\u00e9rez-Chac\u00f3n, R., Troncoso, A., Mart\u00ednez-\u00c1lvarez, F.: MV-KWNN: a novel multivariate and multi-output weighted nearest neighbours algorithm for big data time series forecasting. Neurocomputing 353, 56\u201373 (2019)","journal-title":"Neurocomputing"},{"key":"25_CR21","volume-title":"Introduction to Data Mining","author":"PN Tan","year":"2005","unstructured":"Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2005)","edition":"1"},{"unstructured":"Tavenard, R.: tslearn: a machine learning toolkit dedicated to time-series data (2017). \nhttps:\/\/github.com\/rtavenar\/tslearn","key":"25_CR22"},{"doi-asserted-by":"crossref","unstructured":"Trosten, D.J., Strauman, A.S., Kampffmeyer, M., Jenssen, R.: Recurrent deep divergence-based clustering for simultaneous feature learning and clustering of variable length time series. In: ICASSP, pp. 3257\u20133261 (2019)","key":"25_CR23","DOI":"10.1109\/ICASSP.2019.8682365"},{"doi-asserted-by":"crossref","unstructured":"Tzirakis, P., Nicolaou, M.A., Schuller, B.W., Zafeiriou, S.: Time-series clustering with jointly learning deep representations, clusters and temporal boundaries. In: ICAFGR, pp. 1\u20135 (2019)","key":"25_CR24","DOI":"10.1109\/FG.2019.8756618"},{"key":"25_CR25","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"474","DOI":"10.1007\/11527503_57","volume-title":"Advanced Data Mining and Applications","author":"EHC Wu","year":"2005","unstructured":"Wu, E.H.C., Yu, P.L.H.: Independent component analysis for clustering multivariate time series data. In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 474\u2013482. Springer, Heidelberg (2005). \nhttps:\/\/doi.org\/10.1007\/11527503_57"},{"key":"25_CR26","doi-asserted-by":"publisher","first-page":"139580","DOI":"10.1109\/ACCESS.2019.2943474","volume":"7","author":"G Wu","year":"2019","unstructured":"Wu, G., Zhang, H., He, Y., Bao, X., Li, L., Hu, X.: Learning Kullback-Leibler divergence-based gaussian model for multivariate time series classification. IEEE Access 7, 139580\u2013139591 (2019)","journal-title":"IEEE Access"},{"doi-asserted-by":"crossref","unstructured":"Xiao, L., Zhang, H., Chen, W.: Gated multi-task network for text classification. In: NAACL-HLT, pp. 726\u2013731 (2018)","key":"25_CR27","DOI":"10.18653\/v1\/N18-2114"},{"unstructured":"Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML, pp. 478\u2013487 (2016)","key":"25_CR28"}],"container-title":["Lecture Notes in Computer Science","Advances in Knowledge Discovery and Data Mining"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-47426-3_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,8]],"date-time":"2020-05-08T08:12:09Z","timestamp":1588925529000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-47426-3_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030474256","9783030474263"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-47426-3_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"6 May 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PAKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific-Asia Conference on Knowledge Discovery and Data Mining","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 May 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 May 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pakdd2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.pakdd2020.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT System","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"628","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6-8","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}