{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T14:57:23Z","timestamp":1726066643905},"publisher-location":"Cham","reference-count":12,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030398774"},{"type":"electronic","value":"9783030398781"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-39878-1_5","type":"book-chapter","created":{"date-parts":[[2020,2,3]],"date-time":"2020-02-03T07:02:33Z","timestamp":1580713353000},"page":"45-52","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Reducing the Number of Multiplications in Convolutional Recurrent Neural Networks (ConvRNNs)"],"prefix":"10.1007","author":[{"given":"Daria","family":"Vazhenina","sequence":"first","affiliation":[]},{"given":"Atsunori","family":"Kanemura","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,2,4]]},"reference":[{"key":"5_CR1","unstructured":"Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. In: International Conference Learning Representations (ICLR) (2016)"},{"key":"5_CR2","doi-asserted-by":"crossref","unstructured":"Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. In: IEEE Conference Computer Vision and Pattern Recognition (CVPR), pp. 2625\u20132634 (2015)","DOI":"10.1109\/CVPR.2015.7298878"},{"key":"5_CR3","unstructured":"Elsayed, N., Maida, A.S., Bayoumi, M.: Reduced-gate convolutional LSTM using predictive coding for spatiotemporal prediction. arXiv:1810.07251 (2018)"},{"key":"5_CR4","doi-asserted-by":"crossref","unstructured":"Li, S., Li, W., Cook, C., Zhu, C., Gao, Y.: Independently recurrent neural network (IndRNN): building a longer and deeper RNN. In: IEEE Conference Computer Vision and Pattern Recognition (CVPR), pp. 5457\u20135466 (2018)","DOI":"10.1109\/CVPR.2018.00572"},{"key":"5_CR5","unstructured":"Sautermeister, B.: Deep learning approaches to predict future frames in videos. Master\u2019s thesis, Technishe Universit\u00e4t M\u00fcnchen (2016)"},{"key":"5_CR6","unstructured":"Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems (NIPS), pp. 802\u2013810 (2015)"},{"key":"5_CR7","unstructured":"Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.Y., Wong, W., Woo, W.: Deep learning for precipitation nowcasting: a benchmark and a new model. In: Advances in Neural Information Processing Systems (NIPS), pp. 5617\u20135627 (2017)"},{"key":"5_CR8","unstructured":"Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference Machine Learning (ICML), pp. 843\u2013852 (2015)"},{"key":"5_CR9","unstructured":"van der Westhuizen, J., Lasenby, J.: The unreasonable effectiveness of the forget gate. arXiv:1804.04849 (2018)"},{"key":"5_CR10","doi-asserted-by":"crossref","unstructured":"Vazhenina, D., Kanemura, A.: Reducing the number of multiplications in convolutional recurrent neural networks (ConvRNNs). In: Annual Conference of the Japanese Society for Artificial Intelligence (JSAI) (2019)","DOI":"10.1007\/978-3-030-39878-1_5"},{"key":"5_CR11","unstructured":"Wang, Y., Gao, Z., Long, M., Wang, J., Yu, P.S.: PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In: International Conference Machine Learning (ICML) (2018)"},{"issue":"4","key":"5_CR12","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."}],"container-title":["Advances in Intelligent Systems and Computing","Advances in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-39878-1_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,25]],"date-time":"2021-02-25T16:04:13Z","timestamp":1614269053000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-39878-1_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030398774","9783030398781"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-39878-1_5","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"4 February 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"JSAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Annual Conference of the Japanese Society for Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Niigata","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"33","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"jsai2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.ai-gakkai.or.jp\/jsai2019\/en","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}