{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T14:48:37Z","timestamp":1726066117317},"publisher-location":"Cham","reference-count":39,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030397692"},{"type":"electronic","value":"9783030397708"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-39770-8_15","type":"book-chapter","created":{"date-parts":[[2020,1,26]],"date-time":"2020-01-26T20:03:21Z","timestamp":1580069001000},"page":"183-193","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Spatial Hierarchical Analysis Deep Neural Network for RGB-D Object Recognition"],"prefix":"10.1007","author":[{"given":"Syed Afaq Ali","family":"Shah","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,1,27]]},"reference":[{"key":"15_CR1","doi-asserted-by":"crossref","unstructured":"Asif, U., Bennamoun, M., Sohel, F.: Efficient RGB-D object categorization using cascaded ensembles of randomized decision trees. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1295\u20131302. IEEE (2015)","DOI":"10.1109\/ICRA.2015.7139358"},{"key":"15_CR2","doi-asserted-by":"publisher","first-page":"280","DOI":"10.1016\/j.neucom.2015.03.017","volume":"165","author":"J Bai","year":"2015","unstructured":"Bai, J., Wu, Y., Zhang, J., Chen, F.: Subset based deep learning for RGB-D object recognition. Neurocomputing 165, 280\u2013292 (2015)","journal-title":"Neurocomputing"},{"key":"15_CR3","doi-asserted-by":"crossref","unstructured":"Blum, M., Springenberg, J.T., W\u00fclfing, J., Riedmiller, M.: A learned feature descriptor for object recognition in RGB-D data. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1298\u20131303. IEEE (2012)","DOI":"10.1109\/ICRA.2012.6225188"},{"key":"15_CR4","doi-asserted-by":"crossref","unstructured":"Bo, L., Ren, X., Fox, D.: Depth kernel descriptors for object recognition. In: 2011 IEEE\/RSJ International Conference on Intelligent Robots and Systems, pp. 821\u2013826. IEEE (2011)","DOI":"10.1109\/IROS.2011.6095119"},{"key":"15_CR5","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1007\/978-3-319-00065-7_27","volume-title":"Experimental Robotics","author":"Liefeng Bo","year":"2013","unstructured":"Bo, L., Ren, X., Fox, D.: Unsupervised feature learning for RGB-D based object recognition. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 88, pp. 387\u2013402. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-319-00065-7_27"},{"key":"15_CR6","doi-asserted-by":"crossref","unstructured":"Browatzki, B., Fischer, J., Graf, B., B\u00fclthoff, H.H., Wallraven, C.: Going into depth: evaluating 2D and 3D cues for object classification on a new, large-scale object dataset. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1189\u20131195. IEEE (2011)","DOI":"10.1109\/ICCVW.2011.6130385"},{"key":"15_CR7","doi-asserted-by":"crossref","unstructured":"Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)","DOI":"10.5244\/C.28.6"},{"key":"15_CR8","doi-asserted-by":"crossref","unstructured":"Cheng, Y., Zhao, X., Huang, K., Tan, T.: Semi-supervised learning for RGB-D object recognition. In: 2014 22nd International Conference on Pattern Recognition, pp. 2377\u20132382. IEEE (2014)","DOI":"10.1109\/ICPR.2014.412"},{"key":"15_CR9","unstructured":"Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215\u2013223 (2011)"},{"key":"15_CR10","unstructured":"Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249\u2013256 (2010)"},{"key":"15_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1007\/978-3-319-10584-0_23","volume-title":"Computer Vision \u2013 ECCV 2014","author":"S Gupta","year":"2014","unstructured":"Gupta, S., Girshick, R., Arbel\u00e1ez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345\u2013360. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10584-0_23"},{"key":"15_CR12","doi-asserted-by":"crossref","unstructured":"Hariharan, B., Arbel\u00e1ez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447\u2013456 (2015)","DOI":"10.1109\/CVPR.2015.7298642"},{"key":"15_CR13","doi-asserted-by":"crossref","unstructured":"Hu, H., Shah, S.A.A., Bennamoun, M., Molton, M.: 2D and 3D face recognition using convolutional neural network. In: TENCON 2017\u20132017 IEEE Region 10 Conference, pp. 133\u2013132. IEEE (2017)","DOI":"10.1109\/TENCON.2017.8227850"},{"key":"15_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1007\/978-3-319-16865-4_18","volume-title":"Computer Vision \u2013 ACCV 2014","author":"I-H Jhuo","year":"2015","unstructured":"Jhuo, I.-H., Gao, S., Zhuang, L., Lee, D.T., Ma, Y.: Unsupervised feature learning for RGB-D image classification. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 276\u2013289. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-16865-4_18"},{"issue":"5","key":"15_CR15","doi-asserted-by":"publisher","first-page":"433","DOI":"10.1109\/34.765655","volume":"21","author":"AE Johnson","year":"1999","unstructured":"Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433\u2013449 (1999)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"15_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.2200\/S00822ED1V01Y201712COV015","volume":"8","author":"S Khan","year":"2018","unstructured":"Khan, S., Rahmani, H., Shah, S.A.A., Bennamoun, M.: A guide to convolutional neural networks for computer vision. Synth. Lect. Comput. Vis. 8(1), 1\u2013207 (2018)","journal-title":"Synth. Lect. Comput. Vis."},{"key":"15_CR17","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"15_CR18","doi-asserted-by":"crossref","unstructured":"Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1817\u20131824. IEEE (2011)","DOI":"10.1109\/ICRA.2011.5980382"},{"key":"15_CR19","unstructured":"Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 (2015)"},{"key":"15_CR20","unstructured":"Lee, H., Pham, P., Largman, Y., Ng, A.Y.: Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Advances in Neural Information Processing Systems, pp. 1096\u20131104 (2009)"},{"key":"15_CR21","doi-asserted-by":"crossref","unstructured":"Liu, L., Shen, C., van den Hengel, A.: The treasure beneath convolutional layers: cross-convolutional-layer pooling for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4749\u20134757 (2015)","DOI":"10.1109\/CVPR.2015.7299107"},{"key":"15_CR22","unstructured":"Liu, W., Ji, R., Li, S.: Towards 3D object detection with bimodal deep Boltzmann machines over RGBD imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3013\u20133021 (2015)"},{"issue":"2","key":"15_CR23","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Lowe","year":"2004","unstructured":"Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91\u2013110 (2004)","journal-title":"Int. J. Comput. Vis."},{"key":"15_CR24","unstructured":"Nadeem, U., Shah, S.A.A., Bennamoun, M., Togneri, R., Sohel, F.: Image set classification for low resolution surveillance. arXiv preprint arXiv:1803.09470 (2018)"},{"key":"15_CR25","doi-asserted-by":"crossref","unstructured":"Schwarz, M., Schulz, H., Behnke, S.: RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1329\u20131335. IEEE (2015)","DOI":"10.1109\/ICRA.2015.7139363"},{"key":"15_CR26","doi-asserted-by":"crossref","unstructured":"Shah, S., Bennamoun, M., Boussaid, F., El-Sallam, A.: A novel local surface description for automatic 3D object recognition in low resolution cluttered scenes. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 638\u2013643 (2013)","DOI":"10.1109\/ICCVW.2013.88"},{"key":"15_CR27","doi-asserted-by":"crossref","unstructured":"Shah, S.A., Nadeem, U., Bennamoun, M., Sohel, F., Togneri, R.: Efficient image set classification using linear regression based image reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 99\u2013108 (2017)","DOI":"10.1109\/CVPRW.2017.88"},{"key":"15_CR28","unstructured":"Shah, S.A.A., Bennamoun, M., Boussaid, F.: Performance evaluation of 3D local surface descriptors for low and high resolution range image registration. In: 2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1\u20137. IEEE (2014)"},{"issue":"9","key":"15_CR29","doi-asserted-by":"publisher","first-page":"2859","DOI":"10.1016\/j.patcog.2015.03.014","volume":"48","author":"SAA Shah","year":"2015","unstructured":"Shah, S.A.A., Bennamoun, M., Boussaid, F.: A novel 3D vorticity based approach for automatic registration of low resolution range images. Pattern Recogn. 48(9), 2859\u20132871 (2015)","journal-title":"Pattern Recogn."},{"key":"15_CR30","doi-asserted-by":"publisher","first-page":"866","DOI":"10.1016\/j.neucom.2015.10.004","volume":"174","author":"SAA Shah","year":"2016","unstructured":"Shah, S.A.A., Bennamoun, M., Boussaid, F.: Iterative deep learning for image set based face and object recognition. Neurocomputing 174, 866\u2013874 (2016)","journal-title":"Neurocomputing"},{"key":"15_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.neucom.2015.11.019","volume":"205","author":"SAA Shah","year":"2016","unstructured":"Shah, S.A.A., Bennamoun, M., Boussaid, F.: A novel feature representation for automatic 3D object recognition in cluttered scenes. Neurocomputing 205, 1\u201315 (2016)","journal-title":"Neurocomputing"},{"key":"15_CR32","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/j.patcog.2016.10.028","volume":"64","author":"SAA Shah","year":"2017","unstructured":"Shah, S.A.A., Bennamoun, M., Boussaid, F.: Keypoints-based surface representation for 3D modeling and 3D object recognition. Pattern Recogn. 64, 29\u201338 (2017)","journal-title":"Pattern Recogn."},{"key":"15_CR33","doi-asserted-by":"crossref","unstructured":"Shah, S.A.A., Bennamoun, M., Boussaid, F., El-Sallam, A.A.: 3D-div: a novel local surface descriptor for feature matching and pairwise range image registration. In: 2013 IEEE International Conference on Image Processing, pp. 2934\u20132938. IEEE (2013)","DOI":"10.1109\/ICIP.2013.6738604"},{"key":"15_CR34","unstructured":"Shah, S.A.A., Bennamoun, M., Boussaid, F., El-Sallam, A.A.: Automatic object detection using objectness measure. In: 2013 1st International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), pp. 1\u20136. IEEE (2013)"},{"key":"15_CR35","doi-asserted-by":"publisher","first-page":"2434","DOI":"10.1109\/ACCESS.2017.2783331","volume":"6","author":"SAA Shah","year":"2017","unstructured":"Shah, S.A.A., Bennamoun, M., Boussaid, F., While, L.: Evolutionary feature learning for 3-D object recognition. IEEE Access 6, 2434\u20132444 (2017)","journal-title":"IEEE Access"},{"key":"15_CR36","unstructured":"Shah, S.A.A., Bennamoun, M., Molton, M.: A fully automatic framework for prediction of 3D facial rejuvenation. In: 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1\u20136. IEEE (2018)"},{"key":"15_CR37","doi-asserted-by":"publisher","first-page":"23779","DOI":"10.1109\/ACCESS.2019.2899379","volume":"7","author":"SAA Shah","year":"2019","unstructured":"Shah, S.A.A., Bennamoun, M., Molton, M.K.: Machine learning approaches for prediction of facial rejuvenation using real and synthetic data. IEEE Access 7, 23779\u201323787 (2019)","journal-title":"IEEE Access"},{"key":"15_CR38","doi-asserted-by":"crossref","unstructured":"Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806\u2013813 (2014)","DOI":"10.1109\/CVPRW.2014.131"},{"key":"15_CR39","doi-asserted-by":"crossref","unstructured":"Zaki, H.F., Shafait, F., Mian, A.: Localized deep extreme learning machines for efficient RGB-D object recognition. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1\u20138. IEEE (2015)","DOI":"10.1109\/DICTA.2015.7371280"}],"container-title":["Lecture Notes in Computer Science","Image and Video Technology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-39770-8_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,26]],"date-time":"2024-01-26T01:28:24Z","timestamp":1706232504000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-39770-8_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030397692","9783030397708"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-39770-8_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"27 January 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PSIVT","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific-Rim Symposium on Image and Video Technology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sydney, NSW","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"psivt2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.psivt.org\/psivt2019\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"56% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}