{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T14:25:33Z","timestamp":1726064733466},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030387518"},{"type":"electronic","value":"9783030387525"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-38752-5_4","type":"book-chapter","created":{"date-parts":[[2020,1,7]],"date-time":"2020-01-07T20:02:41Z","timestamp":1578427361000},"page":"44-56","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["SMARF: Smart Farming Framework Based on Big Data, IoT and Deep Learning Model for Plant Disease Detection and Prevention"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9684-490X","authenticated-orcid":false,"given":"Ahmad Hoirul","family":"Basori","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9454-2780","authenticated-orcid":false,"given":"Andi Besse Firdausiah","family":"Mansur","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1736-5359","authenticated-orcid":false,"given":"Hendra Yufit","family":"Riskiawan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,1,8]]},"reference":[{"key":"4_CR1","first-page":"129","volume-title":"Digitising the Industry - Internet of Things Connecting Physical, Digital and Virtual Worlds","author":"H Sundmaeker","year":"2016","unstructured":"Sundmaeker, H., Verdouw, C., Wolfert, S., P\u00e9rez Freire, L.: Internet of food and farm 2020. In: Vermesan, O., Friess, P. (eds.) Digitising the Industry - Internet of Things Connecting Physical, Digital and Virtual Worlds, pp. 129\u2013151. River Publishers, Gistrup\/Delft (2016)"},{"key":"4_CR2","doi-asserted-by":"crossref","unstructured":"Wolfert, J., S\u00f8rensen, C.G., Goense, D.: A future internet collaboration platform for safe and healthy food from farm to fork. In: IEEE Annual SRII Global Conference, San Jose, CA USA, pp. 266\u2013273 (2014)","DOI":"10.1109\/SRII.2014.47"},{"key":"4_CR3","doi-asserted-by":"publisher","first-page":"817","DOI":"10.1038\/nclimate2317","volume":"4","author":"AP Tai","year":"2014","unstructured":"Tai, A.P., Martin, M.V., Heald, C.L.: Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817\u2013821 (2014). \nhttps:\/\/doi.org\/10.1038\/nclimate2317","journal-title":"Nat. Clim. Change"},{"key":"4_CR4","doi-asserted-by":"publisher","first-page":"1419","DOI":"10.3389\/fpls.2016.01419","volume":"7","author":"SP Mohanty","year":"2016","unstructured":"Mohanty, S.P., Hughes, D.P., Salath\u00e9, M.: Using deep learning for image-based plant disease detection front. Plant Sci. 7, 1419 (2016). \nhttps:\/\/doi.org\/10.3389\/fpls.2016.01419","journal-title":"Plant Sci."},{"issue":"2018","key":"4_CR5","first-page":"311","volume":"145","author":"PF Konstantinos","year":"2018","unstructured":"Konstantinos, P.F.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145(2018), 311\u2013318 (2018)","journal-title":"Comput. Electron. Agric."},{"key":"4_CR6","doi-asserted-by":"crossref","unstructured":"Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P.: Deep-plant: plant identification with convolutional neural networks. In: 2015 IEEE International Conference on Image Processing, pp. 452\u2013456 (2015)","DOI":"10.1109\/ICIP.2015.7350839"},{"key":"4_CR7","doi-asserted-by":"publisher","first-page":"418","DOI":"10.1016\/j.compag.2016.07.003","volume":"127","author":"GL Grinblat","year":"2016","unstructured":"Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M.: Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 127, 418\u2013424 (2016)","journal-title":"Comput. Electron. Agric."},{"key":"4_CR8","unstructured":"Li, Y.: A brief introduction to deep learning (2018). \nhttps:\/\/www.cs.tau.ac.il\/~dcor\/Graphics\/pdf.slides\/YY-Deep%20Learning.pdf\n\n. Accessed 1 Sept 2018"},{"key":"4_CR9","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1016\/j.agsy.2017.01.023","volume":"153","author":"S Wolfert","year":"2017","unstructured":"Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J.: Big data in smart farming - a review. Agric. Syst. 153, 69\u201380 (2017)","journal-title":"Agric. Syst."},{"key":"4_CR10","unstructured":"Epelbaum, T.: Deep Learning: Technical Introduction (2017). \nhttps:\/\/arxiv.org\/pdf\/1709.01412\n\n. Accessed 5 Sept 2018"},{"key":"4_CR11","unstructured":"Sharma, S.R.: Plant Disease Dataset (2018). \nhttps:\/\/www.kaggle.com\/saroz014\/plantdisease\/metadata\n\n. Accessed Apr 2019"},{"key":"4_CR12","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1016\/j.compag.2018.11.005","volume":"156","author":"XE Pantazi","year":"2019","unstructured":"Pantazi, X.E., Moshou, D., Tamouridou, A.A.: Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Comput. Electron. Agric. 156, 96\u2013104 (2019)","journal-title":"Comput. Electron. Agric."},{"issue":"1","key":"4_CR13","first-page":"41","volume":"4","author":"V Singh","year":"2017","unstructured":"Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 4(1), 41\u201349 (2017)","journal-title":"Inf. Process. Agric."},{"key":"4_CR14","doi-asserted-by":"publisher","first-page":"280","DOI":"10.1016\/j.procs.2015.08.022","volume":"58","author":"M Bhange","year":"2015","unstructured":"Bhange, M., Hingoliwala, H.A.: Smart farming: pomegranate disease detection using image processing. Proc. Comput. Sci. 58, 280\u2013288 (2015)","journal-title":"Proc. Comput. Sci."}],"container-title":["Communications in Computer and Information Science","Applied Computing to Support Industry: Innovation and Technology"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-38752-5_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,1,10]],"date-time":"2020-01-10T16:09:00Z","timestamp":1578672540000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-38752-5_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030387518","9783030387525"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-38752-5_4","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"8 January 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACRIT","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Applied Computing to Support Industry: Innovation and Technology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ramadi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Iraq","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"acrit2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.acritt.org.uk\/wp\/acrit-conferences\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EDAS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"159","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}