{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T06:51:19Z","timestamp":1743144679000,"version":"3.40.3"},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030387518"},{"type":"electronic","value":"9783030387525"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-38752-5_27","type":"book-chapter","created":{"date-parts":[[2020,1,7]],"date-time":"2020-01-07T15:02:41Z","timestamp":1578409361000},"page":"336-348","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Cancellable Face Biometrics Template Using AlexNet"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4011-3328","authenticated-orcid":false,"given":"Hiba Basim","family":"Alwan","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5451-0514","authenticated-orcid":false,"given":"Ku Ruhana","family":"Ku-Mahamud","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,1,8]]},"reference":[{"key":"27_CR1","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1016\/j.patrec.2018.06.026","volume":"126","author":"Srijan Das","year":"2019","unstructured":"Das, S., et al.: Lip biometric template security framework using spatial steganography. Pattern Recogn. Lett. (2018). \nhttps:\/\/doi.org\/10.1016\/j.patrec.2018.06.026","journal-title":"Pattern Recognition Letters"},{"key":"27_CR2","doi-asserted-by":"publisher","first-page":"423","DOI":"10.1016\/j.compag.2016.03.014","volume":"123","author":"AI Awad","year":"2016","unstructured":"Awad, A.I.: From classical methods to animal biometrics: a review on cattle identification and tracking. Comput. Electron. Agric. 123, 423\u2013435 (2016). \nhttps:\/\/doi.org\/10.1016\/j.compag.2016.03.014","journal-title":"Comput. Electron. Agric."},{"key":"27_CR3","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1016\/j.future.2018.02.040","volume":"85","author":"Z Ali","year":"2018","unstructured":"Ali, Z., Hoossain, M.S., Muhammad, G., Ullah, I., Abachi, H., Alamri, A.: Edge-centric multimodal authentication system using encrypted biometric template. Future Gener. Comput. Syst. 85, 76\u201387 (2018). \nhttps:\/\/doi.org\/10.1016\/j.future.2018.02.040","journal-title":"Future Gener. Comput. Syst."},{"key":"27_CR4","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1016\/j.jksuci.2014.12.011","volume":"28","author":"G Amirthalingam","year":"2016","unstructured":"Amirthalingam, G., Radhamani, G.: New chaff point based fuzzy vault for multimodal biometric cryptosystem using particle swarm optimization. J. King Saud Univ.-Comput. Inf. Sci. 28, 381\u2013394 (2016). \nhttps:\/\/doi.org\/10.1016\/j.jksuci.2014.12.011","journal-title":"J. King Saud Univ.-Comput. Inf. Sci."},{"key":"27_CR5","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1016\/j.patcog.2015.09.032","volume":"51","author":"WJ Wong","year":"2016","unstructured":"Wong, W.J., Teoh, A.B., Kho, Y.H., Wong, M.D.: Kernel PCA enabled bit-string representation for minutiae-based cancellable fingerprint template. Pattern Recogn. 51, 197\u2013208 (2016). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2015.09.032","journal-title":"Pattern Recogn."},{"key":"27_CR6","doi-asserted-by":"publisher","first-page":"561","DOI":"10.1109\/TPAMI.2007.1004","volume":"29","author":"NK Ratha","year":"2007","unstructured":"Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. Intell. 29, 561\u2013572 (2007). \nhttps:\/\/doi.org\/10.1109\/TPAMI.2007.1004","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"27_CR7","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/j.patcog.2018.01.002","volume":"78","author":"K Nguyen","year":"2018","unstructured":"Nguyen, K., Fookes, C., Sridharan, S., Tistarelli, M.: Super resolution for biometrics: a comprehensive survey. Pattern Recogn. 78, 23\u201342 (2018). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2018.01.002","journal-title":"Pattern Recogn."},{"key":"27_CR8","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/j.future.2017.09.078","volume":"80","author":"ND Sarier","year":"2018","unstructured":"Sarier, N.D.: Multimodal biometric identity based encryption. Future Gener. Comput. Syst. 80, 112\u2013125 (2018). \nhttps:\/\/doi.org\/10.1016\/j.future.2017.09.078","journal-title":"Future Gener. Comput. Syst."},{"key":"27_CR9","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1016\/j.patcog.2017.10.041","volume":"76","author":"K-Y Chee","year":"2018","unstructured":"Chee, K.-Y., Jin, Z., Cai, D., Li, M., Yap, W.-S., Lai, Y.-L.: Cancellable speech template via random binary orthogonal matrices projection hashing. Pattern Recogn. 76, 273\u2013287 (2018). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2017.10.041","journal-title":"Pattern Recogn."},{"key":"27_CR10","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: 25th International Conference on Neural Information Processing Systems (NIPS 2012), pp. 1097\u20131105 (2012)"},{"key":"27_CR11","doi-asserted-by":"publisher","unstructured":"Yagnik, J., Strelow, D., Ross, D.A., Lin, R.-S.: The power of comparative reasoning. In: IEEE International Conference on Computer Vision, pp. 2431\u20132438. IEEE Press, New York (2011). \nhttps:\/\/doi.org\/10.1109\/iccv.2011.6126527","DOI":"10.1109\/iccv.2011.6126527"},{"key":"27_CR12","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1016\/j.patcog.2016.02.024","volume":"56","author":"Z Jin","year":"2016","unstructured":"Jin, Z., Teoh, A.B., Goi, B.-M., Tay, Y.-H.: Biometric cryptosystems: a new biometric key binding and its implementation for fingerprint minutiae-based representation. Pattern Recogn. 56, 50\u201362 (2016). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2016.02.024","journal-title":"Pattern Recogn."},{"key":"27_CR13","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1016\/j.patcog.2017.01.019","volume":"66","author":"S Wang","year":"2017","unstructured":"Wang, S., Yang, W., Hu, J.: Design of alignment-free cancelable fingerprint templates with zoned minutia pairs. Pattern Recogn. 66, 295\u2013301 (2017). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2017.01.019","journal-title":"Pattern Recogn."},{"key":"27_CR14","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1016\/j.inffus.2016.02.002","volume":"32","author":"T Murakami","year":"2016","unstructured":"Murakami, T., Ohki, T., Takahashi, K.: Optimal sequential fusion for multibiometric cryptosystems. Inf. Fusion 32, 93\u2013108 (2016). \nhttps:\/\/doi.org\/10.1016\/j.inffus.2016.02.002","journal-title":"Inf. Fusion"},{"key":"27_CR15","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1016\/j.cose.2016.10.004","volume":"65","author":"R Dwivedi","year":"2017","unstructured":"Dwivedi, R., Dey, S., Singh, R., Prasad, A.: A privacy-preserving cancelable iris generation schema using decimal encoding and look-up table mapping. Comput. Secur. 65, 373\u2013386 (2017). \nhttps:\/\/doi.org\/10.1016\/j.cose.2016.10.004","journal-title":"Comput. Secur."},{"key":"27_CR16","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1016\/j.ins.2017.04.026","volume":"406\u2013407","author":"S Umer","year":"2017","unstructured":"Umer, S., Dhara, B.C., Chandra, B.: A novel cancelable iris recognition system based on feature learning techniques. Inf. Sci. 406\u2013407, 102\u2013118 (2017). \nhttps:\/\/doi.org\/10.1016\/j.ins.2017.04.026","journal-title":"Inf. Sci."},{"key":"27_CR17","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.patcog.2016.10.035","volume":"64","author":"Y-L Lai","year":"2017","unstructured":"Lai, Y.-L., et al.: Cancellable iris template generation based on indexing-first-one hashing. Pattern Recogn. 64, 105\u2013117 (2017). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2016.10.035","journal-title":"Pattern Recogn."},{"key":"27_CR18","doi-asserted-by":"publisher","first-page":"0975","DOI":"10.5120\/2535-3460","volume":"21","author":"A Dwivedi","year":"2018","unstructured":"Dwivedi, A., Kumar, S., Dwivedi, A., Singh, M.: Cancellable biometrics for security and privacy enforcement on semantic web. Int. J. Comput. Appl. 21, 0975\u20138887 (2018). \nhttps:\/\/doi.org\/10.5120\/2535-3460","journal-title":"Int. J. Comput. Appl."},{"key":"27_CR19","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.icte.2018.03.001","volume":"5","author":"W Yang","year":"2018","unstructured":"Yang, W., Wang, S., Zheng, G., Valli, C.: Impact of feature proportion on matching performance of multi-biometric system. ICT Express 5, 37\u201340 (2018). \nhttps:\/\/doi.org\/10.1016\/j.icte.2018.03.001","journal-title":"ICT Express"},{"key":"27_CR20","doi-asserted-by":"publisher","first-page":"458","DOI":"10.1016\/j.patcog.2014.08.024","volume":"48","author":"SH Khan","year":"2015","unstructured":"Khan, S.H., Akbar, M.A., Shah-Zad, F., Farooq, M., Khan, Z.: Secure biometric template generation for multi-factor authentication. Pattern Recogn. 48, 458\u2013472 (2015). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2014.08.024","journal-title":"Pattern Recogn."},{"key":"27_CR21","doi-asserted-by":"publisher","first-page":"661","DOI":"10.1016\/j.procs.2015.06.077","volume":"54","author":"H Kaur","year":"2015","unstructured":"Kaur, H., Khanna, P.: Gaussian random projection based non-invertible cancelable biometric templates. Comput. Sci. 54, 661\u2013670 (2015). \nhttps:\/\/doi.org\/10.1016\/j.procs.2015.06.077","journal-title":"Comput. Sci."},{"key":"27_CR22","first-page":"233","volume":"17","author":"SS Roy","year":"2018","unstructured":"Roy, S.S., Ahmed, M., Akhand, M.A.H.: Noisy image classification using hybrid deep learning methods. J. Inf. Commun. Technol. 17, 233\u2013269 (2018)","journal-title":"J. Inf. Commun. Technol."},{"key":"27_CR23","unstructured":"Alom, M.Z., et al.: The History Began from Alexnet: A Comprehensive Survey on Deep Learning Approaches. ArXivabs\/1803.01164 (2018). n. pag"},{"key":"27_CR24","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1016\/j.biosystemseng.2018.06.017","volume":"174","author":"HK Suh","year":"2018","unstructured":"Suh, H.K., Ijsselmuiden, J., Hofstee, J.W., Henten, E.J.: Transfer learning for the classification of sugar beet and volunteer potato under field conditions. Biosyst. Eng. 174, 50\u201365 (2018). \nhttps:\/\/doi.org\/10.1016\/j.biosystemseng.2018.06.017","journal-title":"Biosyst. Eng."},{"key":"27_CR25","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1016\/j.mineng.2017.10.005","volume":"115","author":"Y Fu","year":"2018","unstructured":"Fu, Y., Aldrich, C.: Froth image analysis by use of transfer learning and convolutional neural networks. Miner. Eng. 115, 68\u201378 (2018). \nhttps:\/\/doi.org\/10.1016\/j.mineng.2017.10.005","journal-title":"Miner. Eng."},{"key":"27_CR26","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.neucom.2018.04.034","volume":"303","author":"C Bai","year":"2018","unstructured":"Bai, C., Huang, L., Pan, X., Zheng, J., Chen, S.: Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 303, 60\u201367 (2018). \nhttps:\/\/doi.org\/10.1016\/j.neucom.2018.04.034","journal-title":"Neurocomputing"},{"key":"27_CR27","unstructured":"Artificial Intelligence Laboratory of FEI. \nhttps:\/\/fei.edu.br\/~cet\/facedatabase.html"},{"key":"27_CR28","unstructured":"Centre for Signal and Image Processing. \nhttp:\/\/www.anefian.com\/research\/face_reco.htm"},{"key":"27_CR29","doi-asserted-by":"publisher","unstructured":"Cherifi, F., Hemery, B., Giot, R., Pasquet, M., Rosenberger, C.: Performance evaluation of behavioral biometric systems. In: Behavioral Biometrics for Human Identification: Intelligent Applications, IGI Global Disseminator of Knowledge, vol. 21 (2009). \nhttps:\/\/doi.org\/10.4018\/978-1-60566-725-6.ch003","DOI":"10.4018\/978-1-60566-725-6.ch003"}],"container-title":["Communications in Computer and Information Science","Applied Computing to Support Industry: Innovation and Technology"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-38752-5_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,1,10]],"date-time":"2020-01-10T11:14:35Z","timestamp":1578654875000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-38752-5_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030387518","9783030387525"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-38752-5_27","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"8 January 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACRIT","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Applied Computing to Support Industry: Innovation and Technology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ramadi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Iraq","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"acrit2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.acritt.org.uk\/wp\/acrit-conferences\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EDAS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"159","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}