{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T16:33:35Z","timestamp":1743093215323,"version":"3.40.3"},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030377304"},{"type":"electronic","value":"9783030377311"}],"license":[{"start":{"date-parts":[[2019,12,24]],"date-time":"2019-12-24T00:00:00Z","timestamp":1577145600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-37731-1_31","type":"book-chapter","created":{"date-parts":[[2019,12,27]],"date-time":"2019-12-27T06:02:51Z","timestamp":1577426571000},"page":"381-392","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Instance Image Retrieval with Generative Adversarial Training"],"prefix":"10.1007","author":[{"given":"Hongkai","family":"Li","sequence":"first","affiliation":[]},{"given":"Cong","family":"Bai","sequence":"additional","affiliation":[]},{"given":"Ling","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Yugang","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Shengyong","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,12,24]]},"reference":[{"key":"31_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"316","DOI":"10.1007\/978-3-030-01225-0_19","volume-title":"Computer Vision \u2013 ECCV 2018","author":"SK Yelamarthi","year":"2018","unstructured":"Yelamarthi, S.K., Reddy, S.K., Mishra, A., Mittal, A.: A zero-shot framework for sketch based image retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 316\u2013333. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01225-0_19"},{"key":"31_CR2","unstructured":"Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269\u20131277 (2015)"},{"key":"31_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"584","DOI":"10.1007\/978-3-319-10590-1_38","volume-title":"Computer Vision \u2013 ECCV 2014","author":"A Babenko","year":"2014","unstructured":"Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584\u2013599. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10590-1_38"},{"issue":"4","key":"31_CR4","doi-asserted-by":"publisher","first-page":"98:1","DOI":"10.1145\/2766959","volume":"34","author":"S Bell","year":"2015","unstructured":"Bell, S., Bala, K.: Learning visual similarity for product design with convolutional neural networks. ACM Trans. Graph. 34(4), 98:1\u201398:10 (2015)","journal-title":"ACM Trans. Graph."},{"key":"31_CR5","doi-asserted-by":"crossref","unstructured":"Chen, Z., Lin, J., Chandrasekhar, V., Duan, L.Y.: Gated square-root pooling for image instance retrieval. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1982\u20131986. IEEE (2018)","DOI":"10.1109\/ICIP.2018.8451486"},{"key":"31_CR6","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.neucom.2018.04.034","volume":"303","author":"B Cong","year":"2018","unstructured":"Cong, B., Ling, H., Xiang, P., Zheng, J., Chen, S.: Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 303, 60\u201367 (2018)","journal-title":"Neurocomputing"},{"key":"31_CR7","doi-asserted-by":"crossref","unstructured":"Dizaji, K.G., Zheng, F., Nourabadi, N.S., Yang, Y., Deng, C., Huang, H.: Unsupervised deep generative adversarial hashing network. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3664\u20133673 (2018)","DOI":"10.1109\/CVPR.2018.00386"},{"key":"31_CR8","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672\u20132680 (2014)"},{"key":"31_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/978-3-319-46466-4_15","volume-title":"Computer Vision \u2013 ECCV 2016","author":"A Gordo","year":"2016","unstructured":"Gordo, A., Almaz\u00e1n, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241\u2013257. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46466-4_15"},{"issue":"2","key":"31_CR10","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1007\/s11263-017-1016-8","volume":"124","author":"A Gordo","year":"2017","unstructured":"Gordo, A., Almaz\u00e1n, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. Int. J. Comput. Vis. 124(2), 237\u2013254 (2017)","journal-title":"Int. J. Comput. Vis."},{"key":"31_CR11","doi-asserted-by":"crossref","unstructured":"Guo, L., Liu, J., Wang, Y., Luo, Z., Wen, W., Lu, H.: Sketch-based image retrieval using generative adversarial networks. In: Proceedings of the ACM on Multimedia Conference, pp. 1267\u20131268 (2017)","DOI":"10.1145\/3123266.3127939"},{"key":"31_CR12","doi-asserted-by":"crossref","unstructured":"Hoang, T., Do, T.T., Le Tan, D.K., Cheung, N.M.: Selective deep convolutional features for image retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1600\u20131608. ACM (2017)","DOI":"10.1145\/3123266.3123417"},{"key":"31_CR13","doi-asserted-by":"crossref","unstructured":"Huang, L., Bai, C., Lu, Y., Chen, S., Tian, Q.: Adversarial learning for content-based image retrieval. In: 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 97\u2013102 (2019)","DOI":"10.1109\/MIPR.2019.00025"},{"issue":"3","key":"31_CR14","doi-asserted-by":"publisher","first-page":"1047","DOI":"10.1109\/TCYB.2018.2879846","volume":"50","author":"Xin Huang","year":"2020","unstructured":"Huang, X., Peng, Y., Yuan, M.: MHTN: modal-adversarial hybrid transfer network for cross-modal retrieval. IEEE Trans. Cybern. 1\u201313 (2018). https:\/\/doi.org\/10.1109\/TCYB.2018.2879846","journal-title":"IEEE Transactions on Cybernetics"},{"key":"31_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"685","DOI":"10.1007\/978-3-319-46604-0_48","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"Y Kalantidis","year":"2016","unstructured":"Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 685\u2013701. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46604-0_48"},{"key":"31_CR16","unstructured":"Kim, J., Yoon, S.E.: Regional attention based deep feature for image retrieval. In: British Machine Vision Conference (BMVC). BMVA (2018)"},{"key":"31_CR17","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1016\/j.neucom.2014.12.111","volume":"169","author":"H Li","year":"2015","unstructured":"Li, H., Sun, F., Liu, L., Ling, W.: A novel traffic sign detection method via color segmentation and robust shape matching. Neurocomputing 169, 77\u201388 (2015)","journal-title":"Neurocomputing"},{"issue":"1","key":"31_CR18","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1007\/s00530-012-0265-1","volume":"19","author":"H Li","year":"2013","unstructured":"Li, H., Wang, X., Tang, J., Zhao, C.: Combining global and local matching of multiple features for precise item image retrieval. Multimedia Syst. 19(1), 37\u201349 (2013)","journal-title":"Multimedia Syst."},{"key":"31_CR19","unstructured":"Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)"},{"issue":"2","key":"31_CR20","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Lowe","year":"2004","unstructured":"Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91\u2013110 (2004)","journal-title":"Int. J. Comput. Vis."},{"key":"31_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"239","DOI":"10.1007\/978-3-319-73600-6_21","volume-title":"MultiMedia Modeling","author":"Y Lv","year":"2018","unstructured":"Lv, Y., Zhou, W., Tian, Q., Li, H.: Scalable bag of selected deep features for visual instance retrieval. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 239\u2013251. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-73600-6_21"},{"issue":"10","key":"31_CR22","doi-asserted-by":"publisher","first-page":"13247","DOI":"10.1007\/s11042-018-6427-1","volume":"78","author":"S Mei","year":"2018","unstructured":"Mei, S., Min, W., Duan, H., Jiang, S.: Instance-level object retrieval via deep region CNN. Multimedia Tools Appl. 78(10), 13247\u201313261 (2018)","journal-title":"Multimedia Tools Appl."},{"key":"31_CR23","doi-asserted-by":"crossref","unstructured":"Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20138, June 2008","DOI":"10.1109\/CVPR.2008.4587635"},{"key":"31_CR24","doi-asserted-by":"crossref","unstructured":"Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20138. IEEE (2007)","DOI":"10.1109\/CVPR.2007.383172"},{"key":"31_CR25","doi-asserted-by":"crossref","unstructured":"Radenovi\u0107, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting Oxford and Paris: large-scale image retrieval benchmarking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5706\u20135715 (2018)","DOI":"10.1109\/CVPR.2018.00598"},{"key":"31_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-319-46448-0_1","volume-title":"Computer Vision \u2013 ECCV 2016","author":"F Radenovi\u0107","year":"2016","unstructured":"Radenovi\u0107, F., Tolias, G., Chum, O.: CNN image retrieval learns from bow: unsupervised fine-tuning with hard examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 3\u201320. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_1"},{"issue":"1","key":"31_CR27","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1006\/jvci.1999.0413","volume":"10","author":"Y Rui","year":"1999","unstructured":"Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: current techniques, promising directions, and open issues. J. Vis. Commun. Image Represent. 10(1), 39\u201362 (1999)","journal-title":"J. Vis. Commun. Image Represent."},{"key":"31_CR28","doi-asserted-by":"crossref","unstructured":"Sivic, Z.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1470\u20131477. IEEE (2003)","DOI":"10.1109\/ICCV.2003.1238663"},{"key":"31_CR29","doi-asserted-by":"crossref","unstructured":"Song, J., He, T., Gao, L., Xu, X., Hanjalic, A., Shen, H.T.: Binary generative adversarial networks for image retrieval. In: AAAI Conference on Artificial Intelligence, pp. 394\u2013401 (2018)","DOI":"10.1609\/aaai.v32i1.11276"},{"key":"31_CR30","unstructured":"Tolias, G., Sicre, R., J\u00e9gou, H.: Particular object retrieval with integral max-pooling of CNN activations. In: International Conference on Learning Representations (ICRL), San Juan, Puerto Rico, pp. 1\u201312 (2016)"},{"issue":"2","key":"31_CR31","doi-asserted-by":"publisher","first-page":"657","DOI":"10.1007\/s11280-018-0541-x","volume":"22","author":"X Xu","year":"2019","unstructured":"Xu, X., He, L., Lu, H., Gao, L., Ji, Y.: Deep adversarial metric learning for cross-modal retrieval. World Wide Web 22(2), 657\u2013672 (2019)","journal-title":"World Wide Web"},{"issue":"5","key":"31_CR32","doi-asserted-by":"publisher","first-page":"1224","DOI":"10.1109\/TPAMI.2017.2709749","volume":"40","author":"L Zheng","year":"2017","unstructured":"Zheng, L., Yang, Y., Tian, Q.: SIFT meets CNN: a decade survey of instance retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1224\u20131244 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Lecture Notes in Computer Science","MultiMedia Modeling"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-37731-1_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,9]],"date-time":"2022-10-09T11:37:40Z","timestamp":1665315460000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-37731-1_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12,24]]},"ISBN":["9783030377304","9783030377311"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-37731-1_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019,12,24]]},"assertion":[{"value":"24 December 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MMM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Multimedia Modeling","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Daejeon","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Korea (Republic of)","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 January 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 January 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mmm2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.mmm2020.kr\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"171","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"40","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"23% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Of the 171 submissions, 46 were accepted as poster papers; of the 49 special session paper submissions, 28 were accepted for oral presentation and 8 for poster presentation; 9 demo papers and 10 VBS papers were also accepted.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}