{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T16:30:44Z","timestamp":1742920244204,"version":"3.40.3"},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030374457"},{"type":"electronic","value":"9783030374464"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-37446-4_8","type":"book-chapter","created":{"date-parts":[[2020,1,3]],"date-time":"2020-01-03T00:26:59Z","timestamp":1578011219000},"page":"93-107","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Exploring Antimicrobial Resistance Prediction Using Post-hoc Interpretable Methods"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-0777-0441","authenticated-orcid":false,"given":"Bernardo","family":"C\u00e1novas-Segura","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0872-5351","authenticated-orcid":false,"given":"Antonio","family":"Morales","sequence":"additional","affiliation":[]},{"given":"Antonio L\u00f3pez","family":"Mart\u00ednez-Carrasco","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5233-3769","authenticated-orcid":false,"given":"Manuel","family":"Campos","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1776-1992","authenticated-orcid":false,"given":"Jose M.","family":"Juarez","sequence":"additional","affiliation":[]},{"given":"Luc\u00eda L\u00f3pez","family":"Rodr\u00edguez","sequence":"additional","affiliation":[]},{"given":"Francisco","family":"Palacios","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,1,3]]},"reference":[{"key":"8_CR1","unstructured":"Guidelines for ATC classification and DDD assignment 2018. Technical report, WHO Collaborating Centre for Drug Statistics Methodology, Oslo, Norway (2017). \nhttps:\/\/www.whocc.no\/filearchive\/publications\/guidelines.pdf\n\n. Accessed 28 Aug 2018"},{"key":"8_CR2","doi-asserted-by":"publisher","first-page":"d8312","DOI":"10.1136\/bmj.d8312","volume":"344","author":"ST Adams","year":"2012","unstructured":"Adams, S.T., Leveson, S.H.: Clinical prediction rules. Br. Med. J. 344, d8312 (2012). \nhttps:\/\/doi.org\/10.1136\/bmj.d8312","journal-title":"Br. Med. J."},{"issue":"3","key":"8_CR3","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1097\/01.psy.0000127692.23278.a9","volume":"66","author":"MA Babyak","year":"2004","unstructured":"Babyak, M.A.: What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom. Med. 66(3), 411\u2013421 (2004). \nhttps:\/\/doi.org\/10.1097\/01.psy.0000127692.23278.a9","journal-title":"Psychosom. Med."},{"issue":"2","key":"8_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2907070","volume":"49","author":"P Branco","year":"2016","unstructured":"Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 49(2), 1\u201350 (2016). \nhttps:\/\/doi.org\/10.1145\/2907070","journal-title":"ACM Comput. Surv."},{"key":"8_CR5","doi-asserted-by":"publisher","unstructured":"Brzezinski, D., Stefanowski, J.: Ensemble classifiers for imbalanced and evolving data streams. In: Last, M., Bunke, H., Kandel, A. (eds.) Data Mining in Time Series and Streaming Databases, Machine Perception and Artificial Intelligence, vol. 83, pp. 44\u201368. World Scientific (2018). \nhttps:\/\/doi.org\/10.1142\/9789813228047_0003","DOI":"10.1142\/9789813228047_0003"},{"issue":"3","key":"8_CR6","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1007\/s13748-016-0089-x","volume":"5","author":"B C\u00e1novas-Segura","year":"2016","unstructured":"C\u00e1novas-Segura, B., Campos, M., Morales, A., Juarez, J.M., Palacios, F.: Development of a clinical decision support system for antibiotic management in a hospital environment. Progress Artif. Intell. 5(3), 181\u2013197 (2016). \nhttps:\/\/doi.org\/10.1007\/s13748-016-0089-x","journal-title":"Progress Artif. Intell."},{"key":"8_CR7","doi-asserted-by":"crossref","unstructured":"Canovas-Segura, B., et al.: Improving interpretable prediction models for antimicrobial resistance. In: 2019 IEEE International Symposium on Computer Medical Systems (CBMS) (2019)","DOI":"10.1109\/CBMS.2019.00111"},{"key":"8_CR8","doi-asserted-by":"publisher","unstructured":"Canovas-Segura, B., et al.: A process-oriented approach for supporting clinical decisions for infection management. In: 2017 IEEE International Conference on Healthcare Informatics (ICHI), pp. 91\u2013100. IEEE (2017). \nhttps:\/\/doi.org\/10.1109\/ICHI.2017.73","DOI":"10.1109\/ICHI.2017.73"},{"issue":"4","key":"8_CR9","doi-asserted-by":"publisher","first-page":"686","DOI":"10.1128\/CMR.13.4.686-707.2000","volume":"13","author":"Y Cetinkaya","year":"2000","unstructured":"Cetinkaya, Y., Falk, P., Mayhall, C.G.: Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 13(4), 686\u2013707 (2000). \nhttps:\/\/doi.org\/10.1128\/CMR.13.4.686-707.2000","journal-title":"Clin. Microbiol. Rev."},{"key":"8_CR10","doi-asserted-by":"publisher","unstructured":"Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1) (2010). \nhttps:\/\/doi.org\/10.18637\/jss.v033.i01","DOI":"10.18637\/jss.v033.i01"},{"issue":"4","key":"8_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2523813","volume":"46","author":"J Gama","year":"2014","unstructured":"Gama, J., \u017dliobait\u0117, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1\u201337 (2014). \nhttps:\/\/doi.org\/10.1145\/2523813","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"8_CR12","doi-asserted-by":"publisher","unstructured":"Hastie, T., Tibshirani, R.: Generalized additive models. In: Encyclopedia of Statistical Sciences. Wiley, Hoboken (2006). \nhttps:\/\/doi.org\/10.1002\/0471667196.ess0297.pub2","DOI":"10.1002\/0471667196.ess0297.pub2"},{"issue":"3","key":"8_CR13","doi-asserted-by":"publisher","first-page":"651","DOI":"10.1198\/106186006X133933","volume":"15","author":"T Hothorn","year":"2006","unstructured":"Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651\u2013674 (2006). \nhttps:\/\/doi.org\/10.1198\/106186006X133933","journal-title":"J. Comput. Graph. Stat."},{"issue":"5","key":"8_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v028.i05","volume":"28","author":"M Kuhn","year":"2008","unstructured":"Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1\u201326 (2008). \nhttps:\/\/doi.org\/10.18637\/jss.v028.i05","journal-title":"J. Stat. Softw."},{"key":"8_CR15","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4614-6849-3","volume-title":"Applied Predictive Modeling","author":"M Kuhn","year":"2013","unstructured":"Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013). \nhttps:\/\/doi.org\/10.1007\/978-1-4614-6849-3"},{"issue":"2","key":"8_CR16","doi-asserted-by":"publisher","first-page":"156","DOI":"10.4065\/mcp.2010.0639","volume":"86","author":"S Leekha","year":"2011","unstructured":"Leekha, S., Terrell, C.L., Edson, R.S.: General principles of antimicrobial therapy. Mayo Clin. Proc. 86(2), 156\u2013167 (2011). \nhttps:\/\/doi.org\/10.4065\/mcp.2010.0639","journal-title":"Mayo Clin. Proc."},{"key":"8_CR17","unstructured":"Lipton, Z.C.: The mythos of model interpretability. CoRR abs\/1606.03490 (2016). \nhttp:\/\/arxiv.org\/abs\/1606.03490"},{"key":"8_CR18","doi-asserted-by":"publisher","unstructured":"Mayor, S.: First who antimicrobial surveillance data reveal high levels of resistance globally. Br. Med. J. 462 (2018). \nhttps:\/\/doi.org\/10.1136\/bmj.k462","DOI":"10.1136\/bmj.k462"},{"key":"8_CR19","unstructured":"Novoselova, N., Wang, J., Pessler, F., Klawonn, F.: Biocomb: Feature Selection and Classification with the Embedded Validation Procedures for Biomedical Data Analysis. \nhttps:\/\/cran.r-project.org\/web\/packages\/Biocomb\/index.html\n\n. Accessed 28 Aug 2018"},{"key":"8_CR20","doi-asserted-by":"publisher","unstructured":"Palacios, F., et al.: A clinical decision support system for an Antimicrobial Stewardship Program. In: HEALTHINF 2016\u20139th International Conference on Health Informatics, Proceedings, pp. 496\u2013501. SciTePress, Rome (2016). \nhttps:\/\/doi.org\/10.5220\/0005824904960501","DOI":"10.5220\/0005824904960501"},{"key":"8_CR21","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511812651","volume-title":"Pattern Recognition and Neural Networks","author":"BD Ripley","year":"1996","unstructured":"Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996). \nhttps:\/\/doi.org\/10.1017\/CBO9780511812651"},{"key":"8_CR22","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-77244-8","volume-title":"Clinical Prediction Models. Statistics for Biology and Health","author":"E Steyerberg","year":"2009","unstructured":"Steyerberg, E.: Clinical Prediction Models. Statistics for Biology and Health. Springer, New York (2009)"},{"key":"8_CR23","unstructured":"Tibshirani, R.: Regression selection and shrinkage via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267\u2013288 (1996). \nhttps:\/\/www.jstor.org\/stable\/2346178"},{"key":"8_CR24","unstructured":"Tsymbal, A.: The problem of concept drift: definitions and related work. Technical report, Department of Computer Science, Trinity College, Dublin (2004)"},{"issue":"1","key":"8_CR25","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1146\/annurev-micro-091213-113003","volume":"68","author":"D Tyne Van","year":"2014","unstructured":"Van Tyne, D., Gilmore, M.S.: Friend turned foe: evolution of enterococcal virulence and antibiotic resistance. Ann. Rev. Microbiol. 68(1), 337\u2013356 (2014). \nhttps:\/\/doi.org\/10.1146\/annurev-micro-091213-113003","journal-title":"Ann. Rev. Microbiol."},{"key":"8_CR26","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1613\/jair.1199","volume":"19","author":"GM Weiss","year":"2003","unstructured":"Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class distribution on tree induction. J. Artif. Intell. Res. 19, 315\u2013354 (2003). \nhttps:\/\/doi.org\/10.1613\/jair.1199","journal-title":"J. Artif. Intell. Res."},{"key":"8_CR27","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/BF00116900","volume":"23","author":"G Widmer","year":"1996","unstructured":"Widmer, G., Miroslav, K.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69\u2013101 (1996). \nhttps:\/\/doi.org\/10.1007\/BF00116900","journal-title":"Mach. Learn."},{"key":"8_CR28","unstructured":"Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: International Conference on Machine Learning (ICML), pp. 1\u20138 (2003)"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-37446-4_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,1,3]],"date-time":"2020-01-03T01:21:49Z","timestamp":1578014509000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-37446-4_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030374457","9783030374464"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-37446-4_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"3 January 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"TEAAM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Transparent, Explainable and Affective AI in Medical Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Poznan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Poland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"teaam2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.geist.re\/teaam:start","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"80% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}