{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T13:37:44Z","timestamp":1726061864521},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030368012"},{"type":"electronic","value":"9783030368029"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-36802-9_31","type":"book-chapter","created":{"date-parts":[[2019,12,5]],"date-time":"2019-12-05T18:03:03Z","timestamp":1575568983000},"page":"286-296","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Patch Selection Denoiser: An Effective Approach Defending Against One-Pixel Attacks"],"prefix":"10.1007","author":[{"given":"Dong","family":"Chen","sequence":"first","affiliation":[]},{"given":"Ruqiao","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Han","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,12,5]]},"reference":[{"key":"31_CR1","unstructured":"Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)"},{"issue":"1","key":"31_CR2","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1109\/TEVC.2010.2059031","volume":"15","author":"S Das","year":"2011","unstructured":"Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4\u201331 (2011)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"31_CR3","unstructured":"Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)"},{"key":"31_CR4","unstructured":"Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)"},{"key":"31_CR5","doi-asserted-by":"publisher","first-page":"14410","DOI":"10.1109\/ACCESS.2018.2807385","volume":"6","author":"N Akhtar","year":"2018","unstructured":"Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410\u201314430 (2018)","journal-title":"IEEE Access"},{"key":"31_CR6","doi-asserted-by":"crossref","unstructured":"Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. (2019)","DOI":"10.1109\/TEVC.2019.2890858"},{"key":"31_CR7","doi-asserted-by":"crossref","unstructured":"Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372\u2013387. IEEE, March 2016","DOI":"10.1109\/EuroSP.2016.36"},{"key":"31_CR8","doi-asserted-by":"crossref","unstructured":"Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765\u20131773 (2017)","DOI":"10.1109\/CVPR.2017.17"},{"key":"31_CR9","unstructured":"Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)"},{"key":"31_CR10","doi-asserted-by":"crossref","unstructured":"Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681\u20134690 (2017)","DOI":"10.1109\/CVPR.2017.19"},{"key":"31_CR11","doi-asserted-by":"crossref","unstructured":"Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.282"},{"key":"31_CR12","doi-asserted-by":"crossref","unstructured":"Baluja, S., Fischer, I.: Adversarial transformation networks: learning to generate adversarial examples. arXiv preprint arXiv:1703.09387 (2017)","DOI":"10.1609\/aaai.v32i1.11672"},{"issue":"6","key":"31_CR13","doi-asserted-by":"publisher","first-page":"1211","DOI":"10.1007\/s11760-012-0389-y","volume":"7","author":"BKS Kumar","year":"2013","unstructured":"Kumar, B.K.S.: Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7(6), 1211\u20131227 (2013)","journal-title":"Signal Image Video Process."},{"issue":"8","key":"31_CR14","doi-asserted-by":"publisher","first-page":"3336","DOI":"10.1109\/TIP.2014.2323127","volume":"23","author":"J Zhang","year":"2014","unstructured":"Zhang, J., Zhao, D., Gao, W.: Group-based sparse representation for image restoration. IEEE Trans. Image Process. 23(8), 3336\u20133351 (2014)","journal-title":"IEEE Trans. Image Process."},{"key":"31_CR15","doi-asserted-by":"crossref","unstructured":"Xu, J., Zhang, L., Zuo, W., Zhang, D., Feng, X.: Patch group based nonlocal self-similarity prior learning for image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 244\u2013252 (2015)","DOI":"10.1109\/ICCV.2015.36"},{"key":"31_CR16","doi-asserted-by":"crossref","unstructured":"Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862\u20132869 (2014)","DOI":"10.1109\/CVPR.2014.366"},{"key":"31_CR17","doi-asserted-by":"crossref","unstructured":"Lefkimmiatis, S.: Universal denoising networks: a novel CNN architecture for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)","DOI":"10.1109\/CVPR.2018.00338"},{"key":"31_CR18","unstructured":"Pl\u00f6tz, T., Roth, S.: Neural nearest neighbors networks. In: Advances in Neural Information Processing Systems (2018)"},{"key":"31_CR19","doi-asserted-by":"crossref","unstructured":"Krull, A., Tim-Oliver, B., Jug, F.: Noise2Void-Learning Denoising from Single Noisy Images. arXiv preprint arXiv:1811.10980 (2018)","DOI":"10.1109\/CVPR.2019.00223"},{"key":"31_CR20","unstructured":"Gross, S., Michael, W.: Training and investigating residual nets. Facebook AI Research (2016)"},{"key":"31_CR21","unstructured":"Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images, vol. 1. no. 4. Technical report, University of Toronto (2009)"},{"key":"31_CR22","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-36802-9_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T16:53:21Z","timestamp":1710262401000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-36802-9_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030368012","9783030368029"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-36802-9_31","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"5 December 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sydney, NSW","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 December 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 December 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ajiips.com.au\/iconip2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}