{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T13:37:18Z","timestamp":1726061838245},"publisher-location":"Cham","reference-count":16,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030368012"},{"type":"electronic","value":"9783030368029"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-36802-9_14","type":"book-chapter","created":{"date-parts":[[2019,12,5]],"date-time":"2019-12-05T18:03:03Z","timestamp":1575568983000},"page":"118-126","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["High-Performance Light Field Reconstruction with Channel-wise and SAI-wise Attention"],"prefix":"10.1007","author":[{"given":"Zexi","family":"Hu","sequence":"first","affiliation":[]},{"given":"Yuk Ying","family":"Chung","sequence":"additional","affiliation":[]},{"given":"Seid Miad","family":"Zandavi","sequence":"additional","affiliation":[]},{"given":"Wanli","family":"Ouyang","sequence":"additional","affiliation":[]},{"given":"Xiangjian","family":"He","sequence":"additional","affiliation":[]},{"given":"Yuefang","family":"Gao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,12,5]]},"reference":[{"unstructured":"Stanford Lytro Light Field Archive. http:\/\/lightfields.stanford.edu\/LF2016.html","key":"14_CR1"},{"unstructured":"Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th $$USENIX$$ Symposium on Operating Systems Design and Implementation OSDI 2016, pp. 265\u2013283 (2016)","key":"14_CR2"},{"unstructured":"Chollet, F., et al.: Keras (2015). https:\/\/keras.io","key":"14_CR3"},{"doi-asserted-by":"crossref","unstructured":"Fiss, J., Curless, B., Szeliski, R.: Refocusing plenoptic images using depth-adaptive splatting. In: 2014 IEEE International Conference on Computational Photography (ICCP), pp. 1\u20139. IEEE (2014)","key":"14_CR4","DOI":"10.1109\/ICCPHOT.2014.6831809"},{"doi-asserted-by":"crossref","unstructured":"Heber, S., Yu, W., Pock, T.: U-shaped networks for shape from light field. In: Proceedings of the British Machine Vision Conference 2016, vol. 1, pp. 37.1\u201337.12 (2016)","key":"14_CR5","DOI":"10.5244\/C.30.37"},{"doi-asserted-by":"crossref","unstructured":"Heber, S., Yu, W., Pock, T.: Neural EPI-volume networks for shape from light field. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017-October, pp. 2271\u20132279, October 2017","key":"14_CR6","DOI":"10.1109\/ICCV.2017.247"},{"doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141. IEEE, June 2018","key":"14_CR7","DOI":"10.1109\/CVPR.2018.00745"},{"issue":"2","key":"14_CR8","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1109\/TPAMI.2018.2794979","volume":"41","author":"HG Jeon","year":"2019","unstructured":"Jeon, H.G., et al.: Depth from a light field image with learning-based matching costs. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 297\u2013310 (2019)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"14_CR9","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1145\/2980179.2980251","volume":"35","author":"NK Kalantari","year":"2016","unstructured":"Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. ACM Trans. Graph. 35(6), 193 (2016). (Proceedings of SIGGRAPH Asia 2016)","journal-title":"ACM Trans. Graph."},{"issue":"20","key":"14_CR10","doi-asserted-by":"publisher","first-page":"29211","DOI":"10.1007\/s11042-018-6597-x","volume":"78","author":"Z Lu","year":"2019","unstructured":"Lu, Z., Yeung, H.W.F., Qu, Q., Chung, Y.Y., Chen, X., Chen, Z.: Improved image classification with 4D light-field and interleaved convolutional neural network. Multimedia Tools Appl. 78(20), 29211\u201329227 (2019)","journal-title":"Multimedia Tools Appl."},{"unstructured":"Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807\u2013814 (2010)","key":"14_CR11"},{"key":"14_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"doi-asserted-by":"crossref","unstructured":"Shin, C., Jeon, H.G., Yoon, Y., So Kweon, I., Joo Kim, S.: EPINET: a fully-convolutional neural network using epipolar geometry for depth from light field images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018","key":"14_CR13","DOI":"10.1109\/CVPR.2018.00499"},{"doi-asserted-by":"crossref","unstructured":"Wang, T.C., Efros, A.A., Ramamoorthi, R.: Occlusion-aware depth estimation using light-field cameras. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3487\u20133495 (2015)","key":"14_CR14","DOI":"10.1109\/ICCV.2015.398"},{"key":"14_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1007\/978-3-319-46487-9_8","volume-title":"Computer Vision \u2013 ECCV 2016","author":"T-C Wang","year":"2016","unstructured":"Wang, T.-C., Zhu, J.-Y., Hiroaki, E., Chandraker, M., Efros, A.A., Ramamoorthi, R.: A 4D light-field dataset and CNN architectures for material recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 121\u2013138. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46487-9_8"},{"key":"14_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"138","DOI":"10.1007\/978-3-030-01231-1_9","volume-title":"Computer Vision \u2013 ECCV 2018","author":"HWF Yeung","year":"2018","unstructured":"Yeung, H.W.F., Hou, J., Chen, J., Chung, Y.Y., Chen, X.: Fast light field reconstruction with deep coarse-to-fine modeling of spatial-angular clues. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 138\u2013154. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01231-1_9"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-36802-9_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T16:50:10Z","timestamp":1710262210000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-36802-9_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030368012","9783030368029"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-36802-9_14","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"5 December 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sydney, NSW","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 December 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 December 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ajiips.com.au\/iconip2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}