{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:47:41Z","timestamp":1726408061476},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030367077"},{"type":"electronic","value":"9783030367084"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-36708-4_59","type":"book-chapter","created":{"date-parts":[[2019,12,12]],"date-time":"2019-12-12T15:24:22Z","timestamp":1576164262000},"page":"717-729","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Deep Extremely Randomized Trees"],"prefix":"10.1007","author":[{"given":"Abdelkader","family":"Berrouachedi","sequence":"first","affiliation":[]},{"given":"Rakia","family":"Jaziri","sequence":"additional","affiliation":[]},{"given":"Gilles","family":"Bernard","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,12,9]]},"reference":[{"key":"59_CR1","unstructured":"Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural Information Processing Systems, pp. 2654\u20132662 (2014)"},{"key":"59_CR2","unstructured":"Blake, C., Merz, C.: UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA 55 (1998). http:\/\/www.ics.uci.edu\/mlearnmlrepository.html"},{"issue":"1","key":"59_CR3","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"issue":"5","key":"59_CR4","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1002\/1520-6661(200009\/10)9:5<311::AID-MFM12>3.0.CO;2-9","volume":"9","author":"D Ayres-de Campos","year":"2000","unstructured":"Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de Sa, J., Pereira-Leite, L.: SisPorto 2.0: a program for automated analysis of cardiotocograms. J. Matern. Fetal Med. 9(5), 311\u2013318 (2000)","journal-title":"J. Matern. Fetal Med."},{"issue":"4","key":"59_CR5","doi-asserted-by":"publisher","first-page":"891","DOI":"10.1007\/s10618-015-0444-8","volume":"30","author":"GO Campos","year":"2016","unstructured":"Campos, G.O., Zimek, A., Sander, J., Campello, R.J., Micenkov\u00e1, B., Schubert, E., Assent, I., Houle, M.E.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Discov. 30(4), 891\u2013927 (2016)","journal-title":"Data Min. Knowl. Discov."},{"key":"59_CR6","unstructured":"Dua, D., Taniskidou, E.K.: UCI machine learning repository. School of Information and Computer Science, University of California, Irvine, CA 144 (2017). http:\/\/archive.ics.uci.edu\/ml"},{"issue":"1","key":"59_CR7","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s10994-006-6226-1","volume":"63","author":"P Geurts","year":"2006","unstructured":"Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3\u201342 (2006)","journal-title":"Mach. Learn."},{"issue":"1","key":"59_CR8","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1023\/B:VISI.0000042993.50813.60","volume":"61","author":"JM Geusebroek","year":"2005","unstructured":"Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103\u2013112 (2005)","journal-title":"Int. J. Comput. Vis."},{"volume-title":"Deep Learning","year":"2016","author":"I Goodfellow","key":"59_CR9","unstructured":"Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)"},{"key":"59_CR10","unstructured":"Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw, T.: CORSIKA: a Monte Carlo code to simulate extensive air showers. Technical report FZKA-6019, Germany (1998)"},{"issue":"20","key":"59_CR11","doi-asserted-by":"publisher","first-page":"6969","DOI":"10.1080\/01431161.2013.810825","volume":"34","author":"BA Johnson","year":"2013","unstructured":"Johnson, B.A., Tateishi, R., Hoan, N.T.: A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees. Int. J. Remote Sens. 34(20), 6969\u20136982 (2013)","journal-title":"Int. J. Remote Sens."},{"issue":"2","key":"59_CR12","doi-asserted-by":"publisher","first-page":"619","DOI":"10.1111\/j.1365-2966.2010.17325.x","volume":"409","author":"M Keith","year":"2010","unstructured":"Keith, M., et al.: The high time resolution universe pulsar survey-I. System configuration and initial discoveries. Mon. Not. R. Astron. Soc. 409(2), 619\u2013627 (2010)","journal-title":"Mon. Not. R. Astron. Soc."},{"key":"59_CR13","unstructured":"Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)"},{"key":"59_CR14","doi-asserted-by":"crossref","unstructured":"Kontschieder, P., Fiterau, M., Criminisi, A., Rota Bulo, S.: Deep neural decision forests. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1467\u20131475 (2015)","DOI":"10.1109\/ICCV.2015.172"},{"key":"59_CR15","doi-asserted-by":"crossref","unstructured":"Kriegel, H.P., Kroger, P., Schubert, E., Zimek, A.: Interpreting and unifying outlier scores. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 13\u201324. SIAM (2011)","DOI":"10.1137\/1.9781611972818.2"},{"key":"59_CR16","unstructured":"Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)"},{"key":"59_CR17","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)"},{"issue":"11","key":"59_CR18","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"issue":"1","key":"59_CR19","doi-asserted-by":"publisher","first-page":"1104","DOI":"10.1093\/mnras\/stw656","volume":"459","author":"RJ Lyon","year":"2016","unstructured":"Lyon, R.J., Stappers, B., Cooper, S., Brooke, J., Knowles, J.: Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach. Mon. Not. R. Astron. Soc. 459(1), 1104\u20131123 (2016)","journal-title":"Mon. Not. R. Astron. Soc."},{"key":"59_CR20","unstructured":"Lyon, R.J.: Why are pulsars hard to find? Ph.D. thesis, The University of Manchester, UK (2016)"},{"key":"59_CR21","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1007\/978-1-4612-2404-4_35","volume-title":"Learning from Data","author":"D Malerba","year":"1996","unstructured":"Malerba, D., Esposito, F., Semeraro, G.: A further comparison of simplification methods for decision-tree induction. In: Fisher, D., Lenz, H.J. (eds.) Learning from Data, pp. 365\u2013374. Springer, New York (1996). https:\/\/doi.org\/10.1007\/978-1-4612-2404-4_35"},{"key":"59_CR22","unstructured":"Miller, K., Hettinger, C., Humpherys, J., Jarvis, T., Kartchner, D.: Forward thinking: building deep random forests. arXiv preprint arXiv:1705.07366 (2017)"},{"key":"59_CR23","unstructured":"Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138\u2013142. IEEE (1994)"},{"key":"59_CR24","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","volume":"61","author":"J Schmidhuber","year":"2015","unstructured":"Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85\u2013117 (2015)","journal-title":"Neural Netw."},{"key":"59_CR25","doi-asserted-by":"crossref","unstructured":"Schubert, E., Wojdanowski, R., Zimek, A., Kriegel, H.P.: On evaluation of outlier rankings and outlier scores. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 1047\u20131058. SIAM (2012)","DOI":"10.1137\/1.9781611972825.90"},{"key":"59_CR26","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs\/1409.1556 (2014). http:\/\/arxiv.org\/abs\/1409.1556"},{"key":"59_CR27","unstructured":"Smith, J.W., Everhart, J., Dickson, W., Knowler, W., Johannes, R.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, p. 261. American Medical Informatics Association (1988)"},{"key":"59_CR28","doi-asserted-by":"crossref","unstructured":"Utkin, L.V., Ryabinin, M.A.: A Siamese deep forest. arXiv preprint arXiv:1704.08715 (2017)","DOI":"10.1016\/j.knosys.2017.10.006"},{"key":"59_CR29","first-page":"1","volume-title":"Proceedings of the 2017 SIAM International Conference on Data Mining","author":"Suhang Wang","year":"2017","unstructured":"Wang, S., Aggarwal, C., Liu, H.: Using a random forest to inspire a neural network and improving on it. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 1\u20139. SIAM (2017)"},{"key":"59_CR30","doi-asserted-by":"crossref","unstructured":"Zhou, Z.H., Feng, J.: Deep forest: towards an alternative to deep neural networks. arXiv preprint arXiv:1702.08835 (2017)","DOI":"10.24963\/ijcai.2017\/497"},{"key":"59_CR31","doi-asserted-by":"crossref","unstructured":"Zimek, A., Gaudet, M., Campello, R.J., Sander, J.: Subsampling for efficient and effective unsupervised outlier detection ensembles. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 428\u2013436. ACM (2013)","DOI":"10.1145\/2487575.2487676"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-36708-4_59","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,17]],"date-time":"2021-02-17T05:37:13Z","timestamp":1613540233000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-36708-4_59"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030367077","9783030367084"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-36708-4_59","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"9 December 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sydney, NSW","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 December 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 December 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ajiips.com.au\/iconip2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}