{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T13:42:35Z","timestamp":1726062155528},"publisher-location":"Cham","reference-count":32,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030348847"},{"type":"electronic","value":"9783030348854"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-34885-4_14","type":"book-chapter","created":{"date-parts":[[2019,12,9]],"date-time":"2019-12-09T00:02:46Z","timestamp":1575849766000},"page":"167-179","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Evolving Prediction Models with Genetic Algorithm to Forecast Vehicle Volume in a Service Station (Best Application Paper)"],"prefix":"10.1007","author":[{"given":"Himadri Sikhar","family":"Khargharia","sequence":"first","affiliation":[]},{"given":"Siddhartha","family":"Shakya","sequence":"additional","affiliation":[]},{"given":"Russell","family":"Ainslie","sequence":"additional","affiliation":[]},{"given":"Gilbert","family":"Owusu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,11,19]]},"reference":[{"key":"14_CR1","unstructured":"Balwani, S.S.V.: Operational efficiency through resource planning optimization and work process improvement. Ph.D. dissertation, Massachusetts Institute of Technology (2012)"},{"key":"14_CR2","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1016\/j.procir.2016.01.108","volume":"40","author":"I Madanhire","year":"2016","unstructured":"Madanhire, I., Mbohwa, C.: Enterprise resource planning (ERP) in improving operational efficiency: case study. Proc. CIRP 40, 225\u2013229 (2016)","journal-title":"Proc. CIRP"},{"key":"14_CR3","doi-asserted-by":"crossref","unstructured":"Khargharia, H.S., Shakya, S., Ainslie, R., AlShizawi, S., Owusu, G.: Predicting demand in IoT enabled service stations. In: 2019 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), pp. 81\u201387. IEEE (2019)","DOI":"10.1109\/COGSIMA.2019.8724239"},{"key":"14_CR4","unstructured":"Ashraf, A., Baldwin, D.: Vehicle detection system, 17 April 2012. US Patent 8,157,219"},{"key":"14_CR5","unstructured":"Schmidt, C., Bauer, S.: Parking control device, 20 June 2013. US Patent App. 13\/723,016"},{"key":"14_CR6","unstructured":"Huang, Y.: RFID based parking management system, 5 July 2011. US Patent 7,973,641"},{"key":"14_CR7","doi-asserted-by":"crossref","unstructured":"Sheikhpour, S., Sabouri, M., Zahiri, S.-H.: A hybrid Gravitational search algorithm\u2014Genetic algorithm for neural network training. In: 2013 21st Iranian Conference on Electrical Engineering (ICEE). IEEE (2013)","DOI":"10.1109\/IranianCEE.2013.6599894"},{"issue":"1","key":"14_CR8","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1109\/TNN.2005.860885","volume":"17","author":"J-T Tsai","year":"2006","unstructured":"Tsai, J.-T., Chou, J.-H., Liu, T.-K.: Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neural Netw. 17(1), 69\u201380 (2006)","journal-title":"IEEE Trans. Neural Netw."},{"key":"14_CR9","doi-asserted-by":"crossref","unstructured":"Jaddi, N.S., Abdullah, S., Hamdan, A.R.: Taguchi-based parameter designing of genetic algorithm for artificial neural network training. In: 2013 International Conference on Informatics and Creative Multimedia. IEEE (2013)","DOI":"10.1109\/ICICM.2013.54"},{"key":"14_CR10","doi-asserted-by":"crossref","unstructured":"Ainslie, R., McCall, J., Shakya, S., Owusu, G.: Predictive planning with neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2110\u20132117. IEEE (2016)","DOI":"10.1109\/IJCNN.2016.7727460"},{"key":"14_CR11","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1007\/978-3-030-04191-5_24","volume-title":"Artificial Intelligence XXXV","author":"S AlShizawi","year":"2018","unstructured":"AlShizawi, S., Shakya, S., Sluzek, A.S., Ainslie, R., Owusu, G.: Predicting fluid work demand in service organizations using AI techniques. In: Bramer, M., Petridis, M. (eds.) SGAI 2018. LNCS (LNAI), vol. 11311, pp. 266\u2013276. Springer, Cham (2018). \nhttps:\/\/doi.org\/10.1007\/978-3-030-04191-5_24"},{"issue":"5","key":"14_CR12","doi-asserted-by":"publisher","first-page":"356","DOI":"10.1016\/j.advengsoft.2008.05.003","volume":"40","author":"BB Ekici","year":"2009","unstructured":"Ekici, B.B., Aksoy, U.T.: Prediction of building energy consumption by using artificial neural networks. Adv. Eng. Softw. 40(5), 356\u2013362 (2009)","journal-title":"Adv. Eng. Softw."},{"issue":"9\u201311","key":"14_CR13","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1016\/S0895-7177(98)00065-X","volume":"27","author":"S-Y Yun","year":"1998","unstructured":"Yun, S.-Y., Namkoong, S., Rho, J.-H., Shin, S.-W., Choi, J.-U.: A performance evaluation of neural network models in traffic volume forecasting. Math. Comput. Model. 27(9\u201311), 293\u2013310 (1998)","journal-title":"Math. Comput. Model."},{"issue":"03","key":"14_CR14","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1142\/S0129065793000171","volume":"4","author":"X Yao","year":"1993","unstructured":"Yao, X.: Evolutionary artificial neural networks. Int. J. Neural Syst. 4(03), 203\u2013222 (1993)","journal-title":"Int. J. Neural Syst."},{"key":"14_CR15","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/978-3-319-91086-4","volume-title":"Handbook of Metaheuristics","author":"CR Reeves","year":"2010","unstructured":"Reeves, C.R.: Genetic algorithms. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, pp. 109\u2013139. Springer, Boston (2010). \nhttps:\/\/doi.org\/10.1007\/978-3-319-91086-4"},{"key":"14_CR16","unstructured":"Distance correlation: Wikipedia. \nhttps:\/\/en.wikipedia.org\/wiki\/Distance_correlation"},{"key":"14_CR17","unstructured":"Selection: Wikipedia. \nhttps:\/\/en.wikipedia.org\/wiki\/Selection_(genetic_algorithm)"},{"key":"14_CR18","unstructured":"Crossover: Wikipedia. \nhttps:\/\/en.wikipedia.org\/wiki\/Crossover_(genetic_algorithm)"},{"key":"14_CR19","unstructured":"Sigmoid function: Wikipedia. \nhttps:\/\/en.wikipedia.org\/wiki\/Sigmoid_function"},{"issue":"8","key":"14_CR20","doi-asserted-by":"publisher","first-page":"953","DOI":"10.1002\/fut.3990150806","volume":"15","author":"I Kaastra","year":"1995","unstructured":"Kaastra, I., Boyd, M.S.: Forecasting futures trading volume using neural networks. J. Future Mark. 15(8), 953\u2013970 (1995)","journal-title":"J. Future Mark."},{"key":"14_CR21","unstructured":"Lawrence, R.: Using neural networks to forecast stock market prices. University of Manitoba, p. 333 (1997)"},{"issue":"9009","key":"14_CR22","doi-asserted-by":"publisher","first-page":"1146","DOI":"10.1016\/S0140-6736(96)90609-1","volume":"347","author":"R Dybowski","year":"1996","unstructured":"Dybowski, R., Gant, V., Weller, P., Chang, R.: Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. The Lancet 347(9009), 1146\u20131150 (1996)","journal-title":"The Lancet"},{"issue":"2","key":"14_CR23","doi-asserted-by":"publisher","first-page":"246","DOI":"10.1016\/j.ijrmms.2009.09.011","volume":"47","author":"A Majdi","year":"2010","unstructured":"Majdi, A., Beiki, M.: Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. Int. J. Rock Mech. Min. Sci. 47(2), 246\u2013253 (2010)","journal-title":"Int. J. Rock Mech. Min. Sci."},{"key":"14_CR24","doi-asserted-by":"crossref","unstructured":"Starkey, A.J., Hagras, H., Shakya, S., Owusu, G.: A genetic algorithm based system for simultaneous optimisation of workforce skills and teams. KI-K\u00fcnstliche Intelligenz 32(4), 245\u2013260 (2018)","DOI":"10.1007\/s13218-018-0527-y"},{"key":"14_CR25","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1007\/978-3-319-47175-4_19","volume-title":"Research and Development in Intelligent Systems XXXIII","author":"AJ Starkey","year":"2016","unstructured":"Starkey, A.J., Hagras, H., Shakya, S., Owusu, G.: A genetic algorithm based approach for the simultaneous optimisation of workforce skill sets and team allocation. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXXIII, pp. 253\u2013266. Springer, Cham (2016). \nhttps:\/\/doi.org\/10.1007\/978-3-319-47175-4_19"},{"key":"14_CR26","doi-asserted-by":"crossref","unstructured":"Petrovski, A., Shakya, S., McCall, J.: Optimising cancer chemotherapy using an estimation of distribution algorithm and genetic algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. ACM (2006)","DOI":"10.1145\/1143997.1144073"},{"key":"14_CR27","unstructured":"Resilient Back Propagation: Wikipedia. \nhttps:\/\/en.wikipedia.org\/wiki\/Rprop"},{"key":"14_CR28","unstructured":"Early Stopping: Wikipedia. \nhttps:\/\/en.wikipedia.org\/wiki\/Early_stopping"},{"key":"14_CR29","unstructured":"Nau, R.: Introduction to ARIMA: nonseasonal models, Fuqua School of Business Duke University. \nhttps:\/\/people.duke.edu\/rnau\/411arim.htm"},{"key":"14_CR30","unstructured":"Yu, G., Zhang, C.: Switching ARIMA model based forecasting for traffic flow. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. ii-429. IEEE (2004)"},{"issue":"1","key":"14_CR31","doi-asserted-by":"publisher","first-page":"7","DOI":"10.3390\/risks6010007","volume":"6","author":"N Nava","year":"2018","unstructured":"Nava, N., Di Matteo, T., Aste, T.: Financial time series forecasting using empirical mode decomposition and support vector regression. Risks 6(1), 7 (2018)","journal-title":"Risks"},{"key":"14_CR32","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825\u20132830 (2011)","journal-title":"J. Mach. Learn. Res."}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence XXXVI"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-34885-4_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,4,22]],"date-time":"2020-04-22T10:05:32Z","timestamp":1587549932000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-34885-4_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030348847","9783030348854"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-34885-4_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"19 November 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SGAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Innovative Techniques and Applications of Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cambridge","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 December 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 December 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"39","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sgai2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/bcs-sgai.org\/ai2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}