{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,12]],"date-time":"2024-10-12T04:17:32Z","timestamp":1728706652473},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030328740"},{"type":"electronic","value":"9783030328757"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-32875-7_7","type":"book-chapter","created":{"date-parts":[[2019,10,12]],"date-time":"2019-10-12T07:52:05Z","timestamp":1570866725000},"page":"56-64","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Adversarial Learning for Deformable Image Registration: Application to 3D Ultrasound Image Fusion"],"prefix":"10.1007","author":[{"given":"Zisheng","family":"Li","sequence":"first","affiliation":[]},{"given":"Masahiro","family":"Ogino","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,8]]},"reference":[{"issue":"10","key":"7_CR1","doi-asserted-by":"publisher","first-page":"1038","DOI":"10.1109\/42.959301","volume":"20","author":"A Roche","year":"2001","unstructured":"Roche, A., Pennec, X., Malandain, G., Ayache, N.: Rigid registration of 3-D ultrasound with MR images: a new approach combining intensity and gradient information. IEEE Trans. Med. Images 20(10), 1038\u20131049 (2001)","journal-title":"IEEE Trans. Med. Images"},{"key":"7_CR2","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.media.2003.07.003","volume":"8","author":"GP Penney","year":"2004","unstructured":"Penney, G.P., Blackall, J.M., Hamady, M.S., Sabharwal, T.: Registration of freehand 3D ultrasound and magnetic resonance liver images. Med. Image Anal. 8, 81\u201391 (2004)","journal-title":"Med. Image Anal."},{"key":"7_CR3","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1016\/j.media.2008.06.006","volume":"12","author":"W Wein","year":"2008","unstructured":"Wein, W., Brunke, S., et al.: Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med. Image Anal. 12, 577\u2013585 (2008)","journal-title":"Med. Image Anal."},{"key":"7_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1007\/978-3-642-40811-3_5","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2013","author":"W Wein","year":"2013","unstructured":"Wein, W., Ladikos, A., Fuerst, B., Shah, A., Sharma, K., Navab, N.: Global registration of ultrasound to MRI using the LC2metric for enabling neurosurgical guidance. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 34\u201341. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-40811-3_5"},{"key":"7_CR5","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1007\/s11548-008-0270-1","volume":"4","author":"T Lange","year":"2009","unstructured":"Lange, T., Papenberg, N., et al.: 3D ultrasound-CT registration of the liver using combined landmark-intensity information. Int. J. CARS 4, 79\u201388 (2009)","journal-title":"Int. J. CARS"},{"key":"7_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"344","DOI":"10.1007\/978-3-319-66182-7_40","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2212 MICCAI 2017","author":"J Krebs","year":"2017","unstructured":"Krebs, J., et al.: Robust non-rigid registration through agent-based action learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.Louis, Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 344\u2013352. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66182-7_40"},{"key":"7_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1007\/978-3-319-66182-7_31","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2212 MICCAI 2017","author":"M-M Roh\u00e9","year":"2017","unstructured":"Roh\u00e9, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266\u2013274. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66182-7_31"},{"key":"7_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"232","DOI":"10.1007\/978-3-319-66182-7_27","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2212 MICCAI 2017","author":"H Sokooti","year":"2017","unstructured":"Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., I\u0161gum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232\u2013239. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66182-7_27"},{"key":"7_CR9","doi-asserted-by":"publisher","first-page":"378","DOI":"10.1016\/j.neuroimage.2017.07.008","volume":"158","author":"X Yang","year":"2017","unstructured":"Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration\u2013a deep learning approach. NeuroImage 158, 378\u2013396 (2017)","journal-title":"NeuroImage"},{"key":"7_CR10","doi-asserted-by":"crossref","unstructured":"de Vos, B.D., Berendsen, F., Viergever, M.A.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 204\u2013212 (2017)","DOI":"10.1007\/978-3-319-67558-9_24"},{"key":"7_CR11","doi-asserted-by":"crossref","unstructured":"Li, H., Fan, Y.: Non-rigid image registration using fully convolutional networks with deep self-supervision. arXiv preprint arXiv:1709.00799 (2017)","DOI":"10.1109\/ISBI.2018.8363757"},{"key":"7_CR12","unstructured":"Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In: NIPS 2015, pp. 2017\u20132025 (2015)"},{"key":"7_CR13","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: NIPS 2014, pp. 2672\u20132680 (2014)"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV 2017, pp. 2223\u20132232 (2017)","DOI":"10.1109\/ICCV.2017.244"},{"key":"7_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"issue":"2","key":"7_CR16","doi-asserted-by":"publisher","first-page":"384","DOI":"10.1109\/TMI.2017.2743464","volume":"37","author":"O Oktay","year":"2018","unstructured":"Oktay, O., Ferrante, E., Kamnitsas, K.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384\u2013395 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Balakrishnan, G., Zhao, A., Sabuncu, M.R.: An unsupervised learning model for deformable medical image registration. In: CVPR 2018, pp. 9252\u20139260 (2018)","DOI":"10.1109\/CVPR.2018.00964"},{"key":"7_CR18","doi-asserted-by":"crossref","unstructured":"Hu, Y., Modat, M., Gibson, E., Ghavami, N.: Label-driven weakly-supervised learning for multimodal deformable image registration. In: ISBI 2018, pp. 1070\u20131074. IEEE (2018)","DOI":"10.1109\/ISBI.2018.8363756"},{"key":"7_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"739","DOI":"10.1007\/978-3-030-00928-1_83","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"J Fan","year":"2018","unstructured":"Fan, J., Cao, X., Xue, Z., Yap, P.-T., Shen, D.: Adversarial similarity network for evaluating image alignment in deep learning based registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 739\u2013746. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00928-1_83"},{"key":"7_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"774","DOI":"10.1007\/978-3-030-00928-1_87","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"Y Hu","year":"2018","unstructured":"Hu, Y., et al.: Adversarial deformation regularization for training image registration neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 774\u2013782. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00928-1_87"},{"key":"7_CR21","doi-asserted-by":"crossref","unstructured":"Mahapatra, D., Antony, B., Sedai, S.: Deformable medical image registration using generative adversarial networks. In: ISBI 2018, pp. 1449\u20131453. IEEE (2018)","DOI":"10.1109\/ISBI.2018.8363845"}],"container-title":["Lecture Notes in Computer Science","Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-32875-7_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,12]],"date-time":"2024-10-12T00:17:20Z","timestamp":1728692240000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-32875-7_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030328740","9783030328757"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-32875-7_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"8 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SUSI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Smart Ultrasound Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"susi2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/susi-miccai19","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"16","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"63% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.56","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.92","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}